Vortex lines of the electromagnetic field

被引:56
作者
Bialynicki-Birula, I
Bialynicka-Birula, Z
机构
[1] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
[2] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland
[3] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland
[4] Coll Sci, PL-02668 Warsaw, Poland
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 06期
关键词
D O I
10.1103/PhysRevA.67.062114
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Relativistic definition of the phase of the electromagnetic field, involving two Lorentz invariants, based on the Riemann-Silberstein vector is adopted to extend our previous study [I. Bialynicki-Birula, Z. Bialynicka-Birula, and C. Sliwa, Phys. Rev. A 61, 032110 (2000)] of the motion of vortex lines embedded in the solutions of wave equations from Schrodinger wave mechanics to Maxwell theory. It is shown that time evolution of vortex lines has universal features; in Maxwell theory it is very similar to that in Schrodinger wave mechanics. Connection with some early work on geometrodynamics is established. Simple examples of solutions of the Maxwell equations with embedded vortex lines are given. Vortex lines in the Laguerre-Gaussian beams are treated in some detail.
引用
收藏
页数:8
相关论文
共 37 条
[11]  
Bialynicki-Birula I., 1975, Quantum Electrodynamics, V1st ed.
[12]  
Bialynicki-Birula I., 1996, PROGR OPTICS, V36
[13]  
BIALYNICKIBIRUL.I, 1997, NONLINEAR DYNAMICS C
[14]  
BIALYNICKIBIRULA I, 1994, ACTA PHYS POL A, V86, P97
[15]  
Dennis M. R., 2001, THESIS U BRISTOL
[16]   Polarization singularities in paraxial vector fields: morphology and statistics [J].
Dennis, MR .
OPTICS COMMUNICATIONS, 2002, 213 (4-6) :201-221
[18]  
KEMBLE EC, 1958, FUNDAMENTAL PRINCIPL, P71
[19]  
Madelung E, 1926, Z PHYS, V40, P322
[20]   Vortex coupler for atomic Bose-Einstein condensates [J].
Marzlin, KP ;
Zhang, WP ;
Wright, EM .
PHYSICAL REVIEW LETTERS, 1997, 79 (24) :4728-4731