Tuning of Capacitance Behavior of NiO Using Anionic, Cationic, and Nonionic Surfactants by Hydrothermal Synthesis

被引:296
作者
Justin, P. [1 ]
Meher, Sumanta Kumar [1 ]
Rao, G. Ranga [1 ]
机构
[1] Indian Inst Technol Madras, Dept Chem, Madras 600036, Tamil Nadu, India
关键词
MESOPOROUS NICKEL-OXIDE; ELECTROCHEMICAL SUPERCAPACITORS; ELECTRODE MATERIAL; FILMS; CO3O4; MNO2; NANOSTRUCTURES; NANOCRYSTALLINE; BETA-NI(OH)(2); HYDROXIDE;
D O I
10.1021/jp9097155
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, NiO powders with a spherical morphology were synthesized by a simple hydrothermal technique using organic surfactants as templates and urea as the hydrolysis controlling agent. The effect of cationic (cetyl trimethyl ammonium bromide), anionic (sodium dodecyl Sulfate), and nonionic (Triton X-100) surfactants for tuning the surface area, pore size, pore volume, and electrochemical properties of NiO powders was investigated. The NiO powders were characterized by X-ray diffraction, scanning electron microscopy, the Brunauer-Emmett-Tellet-method, cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy. We observed that the charge-storage mechanism ill Our NiO-based electrodes is significantly Faradic in nature rather than capacitive type. The ionic nature of the surfactant used ill the preparation of NiO powders shows a considerable effect oil their capacitance behavior. The specific capacitance Values were found to increase in the order of NiO-T (144 F g(-1)) < NiO-C (239 F g(-1)) < NiO-S (411 F g(-1)) at a current density of 200 mA g(-1) in 2 M KOH aqueous electrolyte Solution. The NiO-S sample exhibits the highest Surface redox reactivity and shows the specific capacitance of 235 F g(-1) over 100 cycles at a current density of 500 mA g(-1) in a life cycle test.
引用
收藏
页码:5203 / 5210
页数:8
相关论文
共 52 条
[21]   Electrochemically deposited nanowhiskers of nickel oxide as a high-power pseudocapacitive electrode [J].
Prasad, KR ;
Miura, N .
APPLIED PHYSICS LETTERS, 2004, 85 (18) :4199-4201
[22]   Remarkable Capacity Retention of Nanostructured Manganese Oxide upon Cycling as an Electrode Material for Supercapacitor [J].
Ragupathy, P. ;
Park, Dae Hoon ;
Campet, Guy ;
Vasan, H. N. ;
Hwang, Seong-Ju ;
Choy, Jin-Ho ;
Munichandraiah, N. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (15) :6303-6309
[23]  
Rouquerol J., 2013, ADSORPTION POWDERS P
[24]   CONDUCTING POLYMERS AS ACTIVE MATERIALS IN ELECTROCHEMICAL CAPACITORS [J].
RUDGE, A ;
DAVEY, J ;
RAISTRICK, I ;
GOTTESFELD, S ;
FERRARIS, JP .
JOURNAL OF POWER SOURCES, 1994, 47 (1-2) :89-107
[25]   Synthesis of hexagonal-shaped SnO2 nanocrystals and SnO2@C nanocomposites for electrochemical redox supercapacitors [J].
Selvan, Ramakrishnan Kalai ;
Perelshtein, Ilana ;
Perkas, Nina ;
Gedanken, Aharon .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (06) :1825-1830
[26]  
Shukla AK, 2000, CURR SCI INDIA, V79, P1656
[27]   Synthesis of MnO2 nanostructures with sea urchin shapes by a sodium dodecyl sulfate-assisted hydrothermal process [J].
Song, Xu Chun ;
Zhao, Yang ;
Zheng, Yi Fan .
CRYSTAL GROWTH & DESIGN, 2007, 7 (01) :159-162
[28]   Structures and electrochemical capacitive properties of RuO2 vertical nanorods encased in hydrous RuO2 [J].
Susanti, Diah ;
Tsai, Dah-Shyang ;
Huang, Ying-Sheng ;
Korotcov, Alexandru ;
Chung, Wen-Hung .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (26) :9530-9537
[29]   Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors [J].
Tao, Feng ;
Zhao, Yong-Qing ;
Zhang, Guo-Qing ;
Li, Hu-Lin .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (06) :1282-1287
[30]   Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor [J].
Toupin, M ;
Brousse, T ;
Bélanger, D .
CHEMISTRY OF MATERIALS, 2004, 16 (16) :3184-3190