Survival analysis with high-dimensional covariates

被引:120
作者
Witten, Daniela M. [1 ]
Tibshirani, Robert [2 ,3 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Hlth Res, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Policy & Stat, Stanford, CA 94305 USA
关键词
GENE-EXPRESSION DATA; GENOME-WIDE ASSOCIATION; B-CELL LYMPHOMA; COX REGRESSION-ANALYSIS; MICROARRAY DATA; PRINCIPAL COMPONENTS; VARIABLE SELECTION; STATISTICAL TESTS; PREDICT SURVIVAL; BREAST-CANCER;
D O I
10.1177/0962280209105024
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
In recent years, breakthroughs in biomedical technology have led to a wealth of data in which the number of features (for instance, genes on which expression measurements are available) exceeds the number of observations (e.g. patients). Sometimes survival outcomes are also available for those same observations. In this case, one might be interested in (a) identifying features that are associated with survival (in a univariate sense), and (b) developing a multivariate model for the relationship between the features and survival that can be used to predict survival in a new observation. Due to the high dimensionality of this data, most classical statistical methods for survival analysis cannot be applied directly. Here, we review a number of methods from the literature that address these two problems..
引用
收藏
页码:29 / 51
页数:23
相关论文
共 64 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Microarray data analysis: from disarray to consolidation and consensus [J].
Allison, DB ;
Cui, XQ ;
Page, GP ;
Sabripour, M .
NATURE REVIEWS GENETICS, 2006, 7 (01) :55-65
[3]  
[Anonymous], 2011, The statistical analysis of failure time data
[4]  
[Anonymous], 2002, Statistical Applications in Genetics and Molecular Biology, DOI DOI 10.2202/1544-6115.1000
[5]  
ANTONIADIS A, 2008, DANTZIG SELECTOR COX
[6]   Prediction by supervised principal components [J].
Bair, E ;
Hastie, T ;
Paul, D ;
Tibshirani, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) :119-137
[7]   Semi-supervised methods to predict patient survival from gene expression data [J].
Bair, E ;
Tibshirani, R .
PLOS BIOLOGY, 2004, 2 (04) :511-522
[8]   A tutorial on statistical methods for population association studies [J].
Balding, David J. .
NATURE REVIEWS GENETICS, 2006, 7 (10) :781-791
[9]   Gene-expression profiles predict survival of patients with lung adenocarcinoma [J].
Beer, DG ;
Kardia, SLR ;
Huang, CC ;
Giordano, TJ ;
Levin, AM ;
Misek, DE ;
Lin, L ;
Chen, GA ;
Gharib, TG ;
Thomas, DG ;
Lizyness, ML ;
Kuick, R ;
Hayasaka, S ;
Taylor, JMG ;
Iannettoni, MD ;
Orringer, MB ;
Hanash, S .
NATURE MEDICINE, 2002, 8 (08) :816-824
[10]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300