Mass spectrometry-based analyses for identifying and characterizing S-nitrosylation of protein tyrosine phosphatases

被引:35
作者
Chen, Yi-Yun
Huang, Yi-Fen
Khoo, Kay-Hooi
Meng, Tzu-Ching
机构
[1] Acad Sinica, Inst Biol Chem, Sect 2, Taipei 11529, Taiwan
[2] Acad Sinica, Natl Core Facil Prote Res, Taipei 11529, Taiwan
[3] Natl Taiwan Univ, Inst Biochem Sci, Coll Life Sci, Taipei, Taiwan
关键词
protein tyrosine phosphatase; nitric oxide; reactive oxygen species; S-nitrosylation; mass spectrometry;
D O I
10.1016/j.ymeth.2007.03.002
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
All members in the protein tyrosine phosphatase (PTP) family of enzymes contain an invariant Cys residue which is absolutely indispensable for catalysis. Due to the unique microenvironment surrounding the active center of PTPs, this Cys residue exhibits an unusually low pKa characteristic, thus being highly susceptible to oxidation or S-nitrosylation. While oxidation-dependent regulation of PTP activity has been extensively examined, the molecular details and biological consequences of PTP S-nitrosylation remain unexplored. We hypothesized that the catalytic Cys residue is targeted by proximal nitric oxide (NO) and its derivatives collectively termed reactive nitrogen species (RNS), leading to nitrosothiol formation concomitant with reversible inactivation of PTPs. To test this hypothesis, we have developed novel strategies to examine the redox status of Cys residues of purified PTP1B that was exposed to NO donor S-Nitroso-N-penicillamine (SNAP). A gel-based method in conjunction with mass spectrometry (MS) analysis revealed that the catalytic Cys215 of PTP1B was reversibly modified when PTP1B was briefly treated with SNAP. In order to further identify the exact mode of NO-induced modification, we employed an online LC-ESI-MS/MS analysis incorporating a mass difference-based, data-dependent acquisition function that effectively mapped the S-nitrosylated Cys residues. Our results demonstrated that treating PTP1B with SNAP led to S-nitrosothiol formation of the catalytic Cys215. Interestingly, SNAP-induced modifications were strictly reversible as highly oxidized Cys derivatives (Cys-SO2H or Cys-SO3H) were not identified by MS analyses. Thus, the methods introduced in this study provide direct evidence to prove the direct link between S-nitrosylation of the catalytic Cys residue and reversible inactivation of PTPs. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:243 / 249
页数:7
相关论文
共 28 条
[1]   Structural and evolutionary relationships among protein tyrosine phosphatase domains [J].
Andersen, JN ;
Mortensen, OH ;
Peters, GH ;
Drake, PG ;
Iversen, LF ;
Olsen, OH ;
Jansen, PG ;
Andersen, HS ;
Tonks, NK ;
Moller, NPH .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (21) :7117-7136
[2]   A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage [J].
Andersen, JN ;
Jansen, PG ;
Echwald, SM ;
Mortensen, OH ;
Fukada, T ;
Del Vecchio, R ;
Tonks, NK ;
Moller, NPH .
FASEB JOURNAL, 2004, 18 (01) :8-30
[3]   The structure and mechanism of protein phosphatases: Insights into catalysis and regulation [J].
Barford, D ;
Das, AK ;
Egloff, MP .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1998, 27 :133-164
[4]   PURIFICATION AND CRYSTALLIZATION OF THE CATALYTIC DOMAIN OF HUMAN PROTEIN-TYROSINE-PHOSPHATASE 1B EXPRESSED IN ESCHERICHIA-COLI [J].
BARFORD, D ;
KELLER, JC ;
FLINT, AJ ;
TONKS, NK .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 239 (05) :726-730
[5]   Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B [J].
Barrett, WC ;
DeGnore, JP ;
Keng, YF ;
Zhang, ZY ;
Yim, MB ;
Chock, PB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (49) :34543-34546
[6]   Structural mechanism of oxidative regulation of the phosphatase Cdc25B via an intramolecular disulfide bond [J].
Buhrman, G ;
Parker, B ;
Sohn, J ;
Rudolph, J ;
Mattos, C .
BIOCHEMISTRY, 2005, 44 (14) :5307-5316
[7]   AN IN-GEL ASSAY FOR PROTEIN-TYROSINE-PHOSPHATASE ACTIVITY - DETECTION OF WIDESPREAD DISTRIBUTION IN CELLS AND TISSUES [J].
BURRIDGE, K ;
NELSON, A .
ANALYTICAL BIOCHEMISTRY, 1995, 232 (01) :56-64
[8]   Novel effects of nitric oxide [J].
Davis, KL ;
Martin, E ;
Turko, IV ;
Murad, F .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2001, 41 :203-236
[9]   S-nitrosylation of matrix metalloproteinases: Signaling pathway to neuronal cell death [J].
Gu, ZZ ;
Kaul, M ;
Yan, BX ;
Kridel, SJ ;
Cui, JK ;
Strongin, A ;
Smith, JW ;
Liddington, RC ;
Lipton, SA .
SCIENCE, 2002, 297 (5584) :1186-1190
[10]   Electrospray tandem mass spectrometry analysis of S- and N-nitrosopeptides: Facile loss of NO and radical-induced fragmentation [J].
Hao, Gang ;
Gross, Steven S. .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2006, 17 (12) :1725-1730