CO2 record between 40 and 8 kyr BP from the Greenland Ice Core Project ice core

被引:47
作者
Anklin, M [1 ]
Schwander, J [1 ]
Stauffer, B [1 ]
Tschumi, J [1 ]
Fuchs, A [1 ]
Barnola, JM [1 ]
Raynaud, D [1 ]
机构
[1] LAB GLACIOL & GEOPHYS ENVIRONM,CNRS,F-38402 ST MARTIN DHER,FRANCE
来源
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS | 1997年 / 102卷 / C12期
关键词
D O I
10.1029/97JC00182
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
CO2 ice-core records show an increase in the atmospheric concentration of 80-100 parts per million by volume (ppmv) from the last glacial maximum (LGM) to the early Holocene. We present CO2 measurements performed on an ice core from central Greenland, drilled during the Greenland Ice Core Project (GRIP). This CO2 profile from GRIP confirms the most prominent CO2 increase from the LGM, with a mean concentration of 200 ppmv, to the early Holocene with concentrations between 290 and 310 ppmv. Some structures of the new CO2 record are similar to those previously obtained from the Dye 3 ice core (Greenland), which indicated a dilemma between Greenland and Antarctic CO2 records [Oeschger et al., 1988]. Both Greenland cores show high CO2 values for rather mild climatic periods during the last glaciation, whereas CO2 records from Antarctica do not show such high CO2 variations during the glaciation and, furthermore, the CO2 values in the early Holocene are about 20-30 ppmv higher in the GRIP record than in Antarctic records. There is some evidence that the difference could be due to chemical reactions between impurities in the ice leading to an increase of the CO2 concentration under certain conditions. If in situ processes can change the CO2 concentration in the air bubbles, the question arises about how reliably do CO2 records from ice cores reflect the atmospheric composition at the time of ice formation. The discrepancies between the CO2 profiles from Greenland and Antarctica can be explained by in situ production of excess CO2 due to interactions between carbonate and acidic species. Since the carbonate concentration in Antarctic ice is much lower than in Greenland ice, CO2 records from Antarctica are much less affected by such in situ-produced CO2.
引用
收藏
页码:26539 / 26545
页数:7
相关论文
共 30 条
  • [21] CARBON-DIOXIDE CONCENTRATION IN BUBBLES OF NATURAL COLD ICE
    NEFTEL, A
    OESCHGER, H
    SCHWANDER, J
    STAUFFER, B
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1983, 87 (21) : 4116 - 4120
  • [22] ICE CORE SAMPLE MEASUREMENTS GIVE ATMOSPHERIC CO2 CONTENT DURING THE PAST 40,000 YR
    NEFTEL, A
    OESCHGER, H
    SCHWANDER, J
    STAUFFER, B
    ZUMBRUNN, R
    [J]. NATURE, 1982, 295 (5846) : 220 - 223
  • [23] Oeschger H., 1988, ANN GLACIOL, V10, P215, DOI DOI 10.3189/S0260305500004626
  • [24] OESCHGER H, 1988, CHANGING ATMOSPHERE, P5
  • [25] THE ICE RECORD OF GREENHOUSE GASES
    RAYNAUD, D
    JOUZEL, J
    BARNOLA, JM
    CHAPPELLAZ, J
    DELMAS, RJ
    LORIUS, C
    [J]. SCIENCE, 1993, 259 (5097) : 926 - 934
  • [26] STAFFELBACH T, 1988, ANN GLACIOL, V10, P167
  • [27] ATMOSPHERIC CO2 CONCENTRATION DURING THE LAST GLACIATION
    STAUFFER, B
    HOFER, H
    OESCHGER, H
    SCHWANDER, J
    SIEGENTHALER, U
    [J]. ANNALS OF GLACIOLOGY-SERIES, 1984, 5 : 160 - 164
  • [28] The GISP2 delta O-18 climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes
    Stuiver, M
    Grootes, PM
    Braziunas, TF
    [J]. QUATERNARY RESEARCH, 1995, 44 (03) : 341 - 354
  • [29] TAYLOR KC, 1993, NATURE, V366, P499
  • [30] CO2 MEASUREMENTS ON 1-CM3 ICE SAMPLES WITH AN IR LASER-SPECTROMETER (IRLS) COMBINED WITH A NEW DRY EXTRACTION DEVICE
    ZUMBRUNN, R
    NEFTEL, A
    OESCHGER, H
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 1982, 60 (02) : 318 - 324