Local and global comparison of continuous functions

被引:40
作者
Edelsbrunner, H [1 ]
Harer, J [1 ]
Natarajan, V [1 ]
Pascucci, V [1 ]
机构
[1] Duke Univ, Dept Comp Sci, Durham, NC 27706 USA
来源
IEEE VISUALIZATION 2004, PROCEEEDINGS | 2004年
关键词
visualization; Riemannian manifolds; smooth functions; time-varying data; comparison measure; differential forms;
D O I
10.1109/VISUAL.2004.68
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce local and global comparison measures for a collection of k less than or equal to d real-valued smooth functions on a common d-dimensional Riemannian manifold. For k = d = 2 we relate the measures to the set of critical points of one function restricted to the level sets of the other. The definition of the measures extends to piecewise linear functions for which they ace easy to compute. The computation of the measures forms the centerpiece of a software tool which we use to study scientific datasets.
引用
收藏
页码:275 / 280
页数:6
相关论文
共 13 条
[1]  
AGARWAL PK, 2004, P 20 ANN S COMP GEOM, P357
[2]  
CARLSSON G, 2004, P EUR S GEOM PROC
[3]  
Darling R.W.R., 1994, Differential Forms and Connections
[4]  
ECHEKKI T, 2001, P 2 JOINT M US SECT
[5]   Hierarchical morse-smale complexes for piecewise linear 2-manifolds [J].
Edelsbrunner, H ;
Harer, J ;
Zomorodian, A .
DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (01) :87-107
[6]   Topological persistence and simplification [J].
Edelsbrunner, H ;
Letscher, D ;
Zomorodian, A .
DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 28 (04) :511-533
[7]  
Edwards C.H, 1973, ADV CALCULUS SEVERAL
[8]  
EELSBRUNNER H, 2004, FDN COMPUTATIONAL MA, P37
[9]  
Feller W., 1968, INTRO PROBABILITY TH
[10]  
Matsumoto Y., 2002, An Introduction to Morse Theory