Coupling schemes for cluster synchronization in coupled Josephson equations

被引:57
作者
Qin, WX [1 ]
Chen, GR
机构
[1] Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
关键词
cluster synchronization; coupling scheme; coupled Josephson equations;
D O I
10.1016/j.physd.2004.07.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an approach to constructing different coupling schemes to stabilize selected cluster synchronization patterns for coupled Josephson equations. In particular, we select a coupling scheme to create synchronization with frequency ratio m(1) : m(2) : (. . .) : m(n), which can be arbitrarily chosen and is independent of the frequencies of the uncoupled oscillators. We also discuss coupled discrete systems. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:375 / 391
页数:17
相关论文
共 28 条
[11]   QUALITATIVE THEORY OF NON-LINEAR BEHAVIOR OF COUPLED JOSEPHSON JUNCTIONS [J].
IMRY, Y ;
SCHULMAN, LS .
JOURNAL OF APPLIED PHYSICS, 1978, 49 (02) :749-758
[12]   Spectral properties and synchronization in coupled map lattices [J].
Jost, J ;
Joy, MP .
PHYSICAL REVIEW E, 2002, 65 (01)
[13]   RELEVANCE OF DYNAMIC CLUSTERING TO BIOLOGICAL NETWORKS [J].
KANEKO, K .
PHYSICA D, 1994, 75 (1-3) :55-73
[14]  
KITOK A, 1995, INTRO MORDEN THEORY
[15]   DYNAMICS OF JOSEPHSON JUNCTION [J].
LEVI, M ;
HOPPENSTEADT, FC ;
MIRANKER, WL .
QUARTERLY OF APPLIED MATHEMATICS, 1978, 36 (02) :167-198
[16]   NONCHAOTIC BEHAVIOR IN THE JOSEPHSON JUNCTION [J].
LEVI, M .
PHYSICAL REVIEW A, 1988, 37 (03) :927-931
[17]  
MORA X, 1987, CONTRIBUTIONS NONLIN, P172
[18]  
OSIPOV GV, 2001, PHYS REV E, V65, P6118
[19]   Partial synchronization: from symmetry towards stability [J].
Pogromsky, A ;
Santoboni, G ;
Nijmeijer, H .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 172 (1-4) :65-87
[20]   Cluster-splitting bifurcation in a system of coupled maps [J].
Popovych, O ;
Pikovsky, A ;
Maistrenko, Y .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 168 :106-125