Multimeric structure of PomA, a component of the Na+-driven polar flagellar motor of Vibrio alginolyticus

被引:68
作者
Sato, K [1 ]
Homma, M [1 ]
机构
[1] Nagoya Univ, Grad Sch Sci, Div Biol Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
D O I
10.1074/jbc.M002236200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Four integral membrane proteins, PomA, PomB, MotX, and MotY, are thought to be directly involved in torque generation of the Na+-driven polar flagellar motor of Vibrio alginolyticus. Our previous study showed that PomA and PomB form a complex, which catalyzes sodium influx in response to a potassium diffusion potential. PomA forms a stable dimer when expressed in a PomB null mutant. To explore the possible functional dependence of PomA domains in adjacent subunits, we prepared a series of PomA dimer fusions containing different combinations of wild-type or mutant subunits, Introduction of the mutation P199L, which completely inactivates flagellar rotation, into either the first or the second half of the dimer abolished motility. The P199L mutation in monomeric PomA also altered the PomA-PomB interaction. PomA dimer with the P199L mutation even in one subunit also had no ability to interact with PomB, indicating that the both subunits in the dimer are required for the functional interaction between PomA and PomB, Flagellar rotation by wild-type PomA dimer was completely inactivated by phenamil, a sodium channel blocker. However, activity was retained in the presence of phenamil when either half of the dimer was replaced with a phenamil-resistant subunit, indicating that both subunits must bind phenamil for motility to be fully inhibited. These observations demonstrate that both halves of the PomA dimer function together to generate the torque for flagellar rotation.
引用
收藏
页码:20223 / 20228
页数:6
相关论文
共 43 条
[1]   Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium [J].
Asai, Y ;
Kojima, S ;
Kato, H ;
Nishioka, N ;
Kawagishi, I ;
Homma, M .
JOURNAL OF BACTERIOLOGY, 1997, 179 (16) :5104-5110
[2]   Hybrid motor with H+ and Na+-driven components can rotate Vibrio polar flagella by using sodium ions [J].
Asai, Y ;
Kawagishi, I ;
Sockett, RE ;
Homma, M .
JOURNAL OF BACTERIOLOGY, 1999, 181 (20) :6332-6338
[3]   Effect of viscosity on swimming by the lateral and polar flagella of Vibrio alginolyticus [J].
Atsumi, T ;
Maekawa, Y ;
Yamada, T ;
Kawagishi, I ;
Imae, Y ;
Homma, M .
JOURNAL OF BACTERIOLOGY, 1996, 178 (16) :5024-5026
[4]   SPECIFIC-INHIBITION OF THE NA+-DRIVEN FLAGELLAR MOTORS OF ALKALOPHILIC BACILLUS STRAINS BY THE AMILORIDE ANALOG PHENAMIL [J].
ATSUMI, T ;
SUGIYAMA, S ;
CRAGOE, EJ ;
IMAE, Y .
JOURNAL OF BACTERIOLOGY, 1990, 172 (03) :1634-1639
[5]  
BERG HC, 1995, BIOPHYS J, V68, pS163
[6]   THE MOTA PROTEIN OF ESCHERICHIA-COLI IS A PROTON-CONDUCTING COMPONENT OF THE FLAGELLAR MOTOR [J].
BLAIR, DF ;
BERG, HC .
CELL, 1990, 60 (03) :439-449
[7]   MUTANT MOTB PROTEINS IN ESCHERICHIA-COLI [J].
BLAIR, DF ;
KIM, DY ;
BERG, HC .
JOURNAL OF BACTERIOLOGY, 1991, 173 (13) :4049-4055
[8]   HOW BACTERIA SENSE AND SWIM [J].
BLAIR, DF .
ANNUAL REVIEW OF MICROBIOLOGY, 1995, 49 :489-522
[9]   Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli [J].
Braun, TF ;
Poulson, S ;
Gully, JB ;
Empey, JC ;
van Way, S ;
Putnam, A ;
Blair, DF .
JOURNAL OF BACTERIOLOGY, 1999, 181 (11) :3542-3551
[10]   BACTERIAL MOTILITY - MEMBRANE TOPOLOGY OF THE ESCHERICHIA-COLI MOTB PROTEIN [J].
CHUN, SY ;
PARKINSON, JS .
SCIENCE, 1988, 239 (4837) :276-278