Coupled weather research and forecasting-stochastic time-inverted lagrangian transport (WRF-STILT) model

被引:143
作者
Nehrkorn, Thomas [1 ]
Eluszkiewicz, Janusz [1 ]
Wofsy, Steven C. [2 ]
Lin, John C. [3 ]
Gerbig, Christoph [4 ]
Longo, Marcos [2 ]
Freitas, Saulo [5 ]
机构
[1] Atmospher & Environm Res Inc, Lexington, MA USA
[2] Harvard Univ, Cambridge, MA 02138 USA
[3] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
[4] Max Planck Inst Biogeochem, Jena, Germany
[5] INPE, Ctr Weather Forecasts & Climate Studies CPTEC, Cachoeira Paulista, Brazil
基金
美国国家科学基金会;
关键词
PARTICLE DISPERSION MODEL; SYSTEM; PARAMETERIZATION; TRAJECTORIES; ENSEMBLE; FLUXES; CO2;
D O I
10.1007/s00703-010-0068-x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper describes the coupling between a mesoscale numerical weather prediction model, the Weather Research and Forecasting (WRF) model, and a Lagrangian Particle Dispersion Model, the Stochastic Time-Inverted Lagrangian Transport (STILT) model. The primary motivation for developing this coupled model has been to reduce transport errors in continental-scale top-down estimates of terrestrial greenhouse gas fluxes. Examples of the model's application are shown here for backward trajectory computations originating at CO2 measurement sites in North America. Owing to its unique features, including meteorological realism and large support base, good mass conservation properties, and a realistic treatment of convection within STILT, the WRF-STILT model offers an attractive tool for a wide range of applications, including inverse flux estimates, flight planning, satellite validation, emergency response and source attribution, air quality, and planetary exploration.
引用
收藏
页码:51 / 64
页数:14
相关论文
共 54 条
[41]  
2
[42]  
RODEAN HC, 1996, METEOROL MONOGR, V26, P84
[43]   Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode [J].
Seibert, P ;
Frank, A .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2004, 4 :51-63
[44]  
SKAMAROCK WC, 2005, 468STR NCAR MMM DIV
[45]   A time-split nonhydrostatic atmospheric model for weather research and forecasting applications [J].
Skamarock, William C. ;
Klemp, Joseph B. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (07) :3465-3485
[46]   Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2 [J].
Stohl, A ;
Forster, C ;
Frank, A ;
Seibert, P ;
Wotawa, G .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :2461-2474
[48]  
*UCAR, 2000, OP 2 VERT COORD
[49]  
ULIASZ M, 1993, J APPL METEOROL, V32, P139, DOI 10.1175/1520-0450(1993)032<0139:TAMDMS>2.0.CO
[50]  
2