Predicting Active Material Utilization in LiFePO4 Electrodes Using a Multiscale Mathematical Model

被引:105
作者
Dargaville, S. [1 ]
Farrell, T. W. [1 ]
机构
[1] Queensland Univ Technol, Brisbane, Qld 4001, Australia
关键词
discharges (electric); electrochemical electrodes; ionic conductivity; iron compounds; lithium compounds; ALKALINE BATTERY CATHODES; PHOSPHO-OLIVINES; DISCHARGE MODEL; LITHIUM; COMPOSITE; DIFFUSION; TRANSPORT; ELECTROLYTES; CAPACITY; DESIGN;
D O I
10.1149/1.3425620
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A mathematical model is developed to simulate the discharge of a LiFePO4 cathode. This model contains three size scales, which match with experimental observations present in the literature on the multiscale nature of LiFePO4 material. A shrinking core is used on the smallest scale to represent the phase transition of LiFePO4 during discharge. The model is then validated against existing experimental data and this validated model is then used to investigate parameters that influence active material utilization. Specifically, the size and composition of agglomerates of LiFePO4 crystals is discussed, and we investigate and quantify the relative effects that the ionic and electronic conductivities within the oxide have on oxide utilization. We find that agglomerates of crystals can be tolerated under low discharge rates. The role of the electrolyte in limiting (cathodic) discharge is also discussed, and we show that electrolyte transport does limit performance at high discharge rates, confirming the conclusions of recent literature. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3425620] All rights reserved.
引用
收藏
页码:A830 / A840
页数:11
相关论文
共 53 条
[1]   Characteristics of LiFePO4 obtained through a one step continuous hydrothermal synthesis process working in supercritical water [J].
Aimable, A. ;
Aymes, D. ;
Bernard, F. ;
Le Cras, F. .
SOLID STATE IONICS, 2009, 180 (11-13) :861-866
[2]   Analysis of the FePO4 to LiFePO4 phase transition [J].
Allen, J. L. ;
Jow, T. R. ;
Wolfenstine, J. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2008, 12 (7-8) :1031-1033
[3]   Anisotropy of electronic and ionic transport in LiFePO4 single crystals [J].
Amin, Ruhul ;
Balaya, Palani ;
Maier, Joachim .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (01) :A13-A16
[4]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[5]   Electron microscopy study of the LiFePO4 to FePO4 phase transition [J].
Chen, GY ;
Song, XY ;
Richardson, TJ .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (06) :A295-A298
[6]   Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries [J].
Choi, Daiwon ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2007, 163 (02) :1064-1069
[7]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[8]  
Crank J., 1984, FREE MOVING BOUNDARY
[9]   Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J].
Delmas, C. ;
Maccario, M. ;
Croguennec, L. ;
Le Cras, F. ;
Weill, F. .
NATURE MATERIALS, 2008, 7 (08) :665-671
[10]   Wired porous cathode materials:: A novel concept for synthesis of LiFePO4 [J].
Dominko, Robert ;
Bele, Marjan ;
Goupil, Jean-Michel ;
Gaberscek, Miran ;
Hanzel, Darko ;
Arcon, Iztok ;
Jamnik, Janez .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :2960-2969