Brain-derived neurotrophic factor prevents changes in Bcl-2 family members and caspase-3 activation induced by excitotoxicity in the striatum

被引:57
作者
Pérez-Navarro, E [1 ]
Gavaldà, N [1 ]
Gratacòs, E [1 ]
Alberch, J [1 ]
机构
[1] Univ Barcelona, Fac Med, IDIBAPS, Dept Biol Cellular & Anat Patol, E-08036 Barcelona, Spain
关键词
apoptosis; basal ganglia; Bax knock-out; kainate; neurotrophic; quinolinate;
D O I
10.1111/j.1471-4159.2004.02904.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Brain-derived neurotrophic factor (BDNF) prevents the loss of striatal neurons caused by excitotoxicity. We examined whether these neuroprotective effects are mediated by changes in the regulation of Bcl-2 family members. We first analyzed the involvement of the phosphatidylinositol 3-kinase/Akt pathway in this regulation, showing a reduction in phosphorylated Akt (p-Akt) levels after both quinolinate (QUIN, an NMDA receptor agonist) and kainate (KA, a non-NMDA receptor agonist) intrastriatal injection. Our results also show that Bcl-2, Bcl-x(L) and Bax protein levels and heterodimerization are selectively regulated by NMDA and non-NMDA receptor stimulation. Striatal cell death induced by QUIN is mediated by an increase in Bax and a decrease in Bcl-2 protein levels, leading to reduced levels of Bax:Bcl-2 heterodimers. In contrast, changes in Bax protein levels are not required for KA-induced apoptotic cell death, but decreased levels of both Bax:Bcl-2 and Bax:Bcl-x(L) heterodimer levels are necessary. Furthermore, QUIN and KA injection activated caspase-3. Intrastriatal grafting of a BDNF-secreting cell line counter-regulated p-AKT, Bcl-2, Bcl-x(L) and Bax protein levels, prevented changes in the heterodimerization between Bax and pro-survival proteins, and blocked caspase-3 activation induced by excitotoxicity. These results provide a possible mechanism to explain the anti-apoptotic effect of BDNF against to excitotoxicity in the striatum through the regulation of Bcl-2 family members, which is probably mediated by Akt activation.
引用
收藏
页码:678 / 691
页数:14
相关论文
共 65 条
[1]   Neuroprotective strategies for basal ganglia degeneration: Parkinson's and Huntington's diseases [J].
Alexi, T ;
Borlongan, CV ;
Faull, RLM ;
Williams, CE ;
Clark, RG ;
Gluckman, PD ;
Hughes, PE .
PROGRESS IN NEUROBIOLOGY, 2000, 60 (05) :409-470
[2]   ROLE OF BCL-2 IN THE BRAIN-DERIVED NEUROTROPHIC FACTOR SURVIVAL RESPONSE [J].
ALLSOPP, TE ;
KISELEV, S ;
WYATT, S ;
DAVIES, AM .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1995, 7 (06) :1266-1272
[3]   THE PROTOONCOGENE BCL-2 CAN SELECTIVELY RESCUE NEUROTROPHIC FACTOR-DEPENDENT NEURONS FROM APOPTOSIS [J].
ALLSOPP, TE ;
WYATT, S ;
PATERSON, HF ;
DAVIES, AM .
CELL, 1993, 73 (02) :295-307
[4]   GLUTAMATE-INDUCED NEURONAL DEATH - A SUCCESSION OF NECROSIS OR APOPTOSIS DEPENDING ON MITOCHONDRIAL-FUNCTION [J].
ANKARCRONA, M ;
DYPBUKT, JM ;
BONFOCO, E ;
ZHIVOTOVSKY, B ;
ORRENIUS, S ;
LIPTON, SA ;
NICOTERA, P .
NEURON, 1995, 15 (04) :961-973
[5]   Bax and other pro-apoptotic Bcl-2 family "killer-proteins" and their victim, the mitochondrion [J].
Antonsson, B .
CELL AND TISSUE RESEARCH, 2001, 306 (03) :347-361
[6]   NEUROTROPHIN-3 PREVENTS THE DEATH OF ADULT CENTRAL NORADRENERGIC NEURONS IN-VIVO [J].
ARENAS, E ;
PERSSON, H .
NATURE, 1994, 367 (6461) :368-371
[7]  
Ayata C, 1997, J NEUROSCI, V17, P6908
[8]   APOPTOSIS AND NECROSIS - 2 DISTINCT EVENTS INDUCED, RESPECTIVELY, BY MILD AND INTENSE INSULTS WITH N-METHYL-D-ASPARTATE OR NITRIC-OXIDE SUPEROXIDE IN CORTICAL CELL-CULTURES [J].
BONFOCO, E ;
KRAINC, D ;
ANKARCRONA, M ;
NICOTERA, P ;
LIPTON, SA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7162-7166
[9]  
Bordelon YM, 1999, J COMP NEUROL, V412, P38, DOI 10.1002/(SICI)1096-9861(19990913)412:1<38::AID-CNE3>3.0.CO
[10]  
2-6