How a Curved Elastic Strip Opens

被引:32
作者
Barois, Thomas [1 ,2 ,3 ]
Tadrist, Loic [1 ]
Quilliet, Catherine [4 ]
Forterre, Yoel [5 ]
机构
[1] Ecole Polytech, CNRS, LadHyX, Dept Mech, F-91128 Palaiseau, France
[2] Univ Grenoble Alpes, LEGI, F-38000 Grenoble, France
[3] CNRS, LEGI, F-38000 Grenoble, France
[4] Univ Grenoble Alpes, CNRS, UMR 5588, LIPhy, F-38041 Grenoble, France
[5] Aix Marseille Univ, CNRS, UMR 7343, IUSTI, F-13453 Marseille 13, France
关键词
DYNAMICS; SINGULARITIES; SHEETS;
D O I
10.1103/PhysRevLett.113.214301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An elastic strip is transversely clamped in a curved frame. The induced curvature decreases as the strip opens and connects to its flat natural shape. Various ribbon profiles are measured and the scaling law for the opening length validates a description where the in-plane stretching gradually relaxes the bending stress. An analytical model of the strip profile is proposed and a quantitative agreement is found with both experiments and simulations of the plates equations. This result provides a unique illustration of smooth nondevelopable solutions in thin sheets.
引用
收藏
页数:5
相关论文
共 33 条
[11]   Deformation and collapse of microtubules on the nanometer scale [J].
de Pablo, PJ ;
Schaap, IAT ;
MacKintosh, FC ;
Schmidt, CF .
PHYSICAL REVIEW LETTERS, 2003, 91 (09)
[12]  
Foppl A., 1907, Vorlesungen uber technische mechanik, V5
[13]  
Gennes P. G., 2004, Capillarity and wetting phenomena: Drops, bubbles, pearls, waves, pp7
[14]  
Gordon J.E., 1978, Structures : or, Why things don't fall down
[15]   A planar rod model with flexible thin-walled cross-sections. Application to the folding of tape springs [J].
Guinot, F. ;
Bourgeois, S. ;
Cochelin, B. ;
Blanchard, L. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2012, 49 (01) :73-86
[16]   ELASTIC PROPERTIES OF LIPID BILAYERS - THEORY AND POSSIBLE EXPERIMENTS [J].
HELFRICH, W .
ZEITSCHRIFT FUR NATURFORSCHUNG C-A JOURNAL OF BIOSCIENCES, 1973, C 28 (11-1) :693-703
[17]  
Krmn T.V., 1907, ENCY MATH WISSENSCHA, P311, DOI DOI 10.1007/978-3-663-16028-1_5
[18]  
Landau L.D., 1996, Theory of Elasticity, V2nd
[19]   Geometry-Induced Rigidity in Nonspherical Pressurized Elastic Shells [J].
Lazarus, A. ;
Florijn, H. C. B. ;
Reis, P. M. .
PHYSICAL REVIEW LETTERS, 2012, 109 (14)
[20]   Properties of ridges in elastic membranes [J].
Lobkovsky, AE ;
Witten, TA .
PHYSICAL REVIEW E, 1997, 55 (02) :1577-1589