Microarray analysis of RNA extracted from formalin-fixed, paraffin-embedded and matched fresh-frozen ovarian adenocarcinomas

被引:51
作者
Fedorowicz, Grazyna [1 ]
Guerrero, Steve [2 ]
Wu, Thomas D. [2 ]
Modrusan, Zora [1 ]
机构
[1] Genentech Inc, Dept Mol Biol, San Francisco, CA 94080 USA
[2] Genentech Inc, Dept Bioinformat, San Francisco, CA 94080 USA
关键词
GENE-EXPRESSION ANALYSIS; SERIAL ANALYSIS; TISSUE; AMPLIFICATION; OPTIMIZATION; PERFORMANCE; CARCINOMAS; PROFILES; FIXATION; SAMPLES;
D O I
10.1186/1755-8794-2-23
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: Gene expression profiling of formalin-fixed, paraffin-embedded (FFPE) samples represents a valuable approach for advancing oncology diagnostics and enhancing retrospective clinical studies; however, at present, this methodology still requires optimization and thus has not been extensively used. Here, we utilized thorough quality control methods to assess RNA extracted from FFPE samples and then compared it to RNA extracted from matched fresh-frozen (FF) counterparts. We preformed genome-wide expression profiling of FF and FFPE ovarian serous adenocarcinoma sample pairs and compared their gene signatures to normal ovary samples. Methods: RNA from FFPE samples was extracted using two different methods, Ambion and Agencourt, and its quality was determined by profiling starting total RNA on Bioanalyzer and by amplifying increasing size fragments of beta actin (ACTB) and claudin 3 (CLDN3) by reverse-transcriptase polymerase chain reaction. Five matched FF and FFPE ovarian serous adenocarcinoma samples, as well as a set of normal ovary samples, were profiled using whole genome Agilent microarrays. Reproducibility of the FF and FFPE replicates was measured using Pearson correlation, whereas comparison between the FF and FFPE samples was done using a Z-score analysis. Results: Data analysis showed high reproducibility of expression within each FF and FFPE method, whereas matched FF and FFPE pairs demonstrated lower similarity, emphasizing an inherent difference between the two sample types. Z-score analysis of matched FF and FFPE samples revealed good concordance of top 100 differentially expressed genes with the highest correlation of 0.84. Genes characteristic of ovarian serous adenocarcinoma, including a well known marker CLDN3, as well as potentially some novel markers, were identified by comparing gene expression profiles of ovarian adenocarcinoma to those of normal ovary. Conclusion: Conclusively, we showed that systematic assessment of FFPE samples at the RNA level is essential for obtaining good quality gene expression microarray data. We also demonstrated that profiling of not only FF but also of FFPE samples can be successfully used to identify differentially expressed genes characteristic of ovarian carcinoma.
引用
收藏
页数:11
相关论文
共 38 条
[1]   A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes [J].
Baldi, P ;
Long, AD .
BIOINFORMATICS, 2001, 17 (06) :509-519
[2]   Differential gene expression profiles between tumor biopsies and short-term primary cultures of ovarian serous carcinomas: Identification of novel molecular biomarkers for early diagnosis and therapy [J].
Bignotti, Eliana ;
Tassi, Renata A. ;
Calza, Stefano ;
Ravaggi, Antonella ;
Romani, Chiara ;
Rossi, Elisa ;
Falchetti, Marcella ;
Odicino, Franco E. ;
Pecorelli, Sergio ;
Santin, Alessandro D. .
GYNECOLOGIC ONCOLOGY, 2006, 103 (02) :405-416
[3]   CDC6:: from DNA replication to cell cycle checkpoints and oncogenesis [J].
Borlado, Luis R. ;
Mendez, Juan .
CARCINOGENESIS, 2008, 29 (02) :237-243
[4]   Analysis of microarray data using Z score transformation [J].
Cheadle, C ;
Vawter, MP ;
Freed, WJ ;
Becker, KG .
JOURNAL OF MOLECULAR DIAGNOSTICS, 2003, 5 (02) :73-81
[5]  
Choi YL, 2007, HISTOL HISTOPATHOL, V22, P1185, DOI 10.14670/HH-22.1185
[6]   Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-κB signaling as characteristics of a high-risk head and neck squamous cell carcinoma [J].
Chung, Christine H. ;
Parker, Joe S. ;
Ely, Kim ;
Carter, Jesse ;
Yi, Yajun ;
Murphy, Barbara A. ;
Ang, K. Man ;
El-Naggar, Adel K. ;
Zanation, Adam M. ;
Cmelak, Anthony J. ;
Levy, Shawn ;
Slebos, Robbert J. ;
Yarbrough, Wendell G. .
CANCER RESEARCH, 2006, 66 (16) :8210-8218
[7]   Successful application of microarray technology to microdissected formalin-fixed, paraffin-embedded tissue [J].
Coudry, Renata A. ;
Meireles, Sibele I. ;
Stoyanova, Radka ;
Cooper, Harry S. ;
Carpino, Alan ;
Wang, Xianqun ;
Engstrom, Paul F. ;
Clapper, Margie L. .
JOURNAL OF MOLECULAR DIAGNOSTICS, 2007, 9 (01) :70-79
[8]  
Crijns APG, 2009, PLOS MED, V6, P181, DOI 10.1371/journal.pmed.1000024
[9]   Measurement of gene expression in archival paraffin-embedded tissues - Development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay [J].
Cronin, M ;
Pho, M ;
Dutta, D ;
Stephans, JC ;
Shak, S ;
Kiefer, MC ;
Esteban, JM ;
Baker, JB .
AMERICAN JOURNAL OF PATHOLOGY, 2004, 164 (01) :35-42
[10]   RETRACTED: An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer (Retracted article. See vol. 30, pg. 678, 2012) [J].
Dressman, Holly K. ;
Berchuck, Andrew ;
Chan, Gina ;
Zhai, Jun ;
Bild, Andrea ;
Sayer, Robyn ;
Cragun, Janiel ;
Clarke, Jennifer ;
Whitaker, Regina S. ;
Li, LiHua ;
Gray, Jonathan ;
Marks, Jeffrey ;
Ginsburg, Geoffrey S. ;
Potti, Anil ;
West, Mike ;
Nevins, Joseph R. ;
Lancaster, Johnathan M. .
JOURNAL OF CLINICAL ONCOLOGY, 2007, 25 (05) :517-525