What makes an enzyme promiscuous?

被引:168
作者
Babtie, Ann [1 ]
Tokuriki, Nobuhiko [2 ]
Hollfelder, Florian [1 ]
机构
[1] Univ Cambridge, Dept Biochem, Cambridge CB2 1GA, England
[2] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
基金
英国生物技术与生命科学研究理事会;
关键词
COLI ALKALINE-PHOSPHATASE; CATALYTIC PROMISCUITY; BACTERIAL PHOSPHOTRIESTERASE; ACTIVE-SITE; CARBONIC-ANHYDRASE; EVOLUTION; MECHANISM; PROTEIN; SUPERFAMILY; LACTONASE;
D O I
10.1016/j.cbpa.2009.11.028
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Kinetic analyses of promiscuous enzymes reveal rate accelerations, (k(cat)/K-M)/k(2), of up to 10(18) for their secondary activities. Such large values suggest that binding and catalysis can be highly efficient for more than one reaction, challenging the notion that proficient catalysis requires specificity. Growing numbers of reported promiscuous activities indicate that catalytic versatility is an inherent property of many enzymes. The examples discussed here illustrate promiscuous molecular recognition mechanisms that, together with knowledge from structural and computational analysis, might be used for the identification or development of catalysts for new reactions
引用
收藏
页码:200 / 207
页数:8
相关论文
共 61 条
  • [1] The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase
    Afriat, Livnat
    Roodveldt, Cintia
    Manco, Giuseppe
    Tawfik, Dan S.
    [J]. BIOCHEMISTRY, 2006, 45 (46) : 13677 - 13686
  • [2] Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase
    Aubert, SD
    Li, YC
    Raushel, FM
    [J]. BIOCHEMISTRY, 2004, 43 (19) : 5707 - 5715
  • [3] Efficient Catalytic Promiscuity for Chemically Distinct Reactions
    Babtie, Ann C.
    Bandyopadhyay, Subhajit
    Olguin, Luis F.
    Hollfelder, Florian
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (20) : 3692 - 3694
  • [4] BLOKZIJL W, 1993, ANGEW CHEM INT EDIT, V32, P1545, DOI 10.1002/anie.199315451
  • [5] 1.3 Å structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family
    Boltes, I
    Czapinska, H
    Kahnert, A
    von Bülow, R
    Dierks, T
    Schmidt, B
    von Figura, K
    Kertesz, MA
    Usón, I
    [J]. STRUCTURE, 2001, 9 (06) : 483 - 491
  • [6] Carbon-carbon bonds by hydrolytic enzymes
    Branneby, C
    Carlqvist, P
    Magnusson, A
    Hult, K
    Brinck, T
    Berglund, P
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (04) : 874 - 875
  • [7] Exploring the active-site of a rationally redesigned lipase for catalysis of Michael-type additions
    Carlqvist, P
    Svedendahl, M
    Branneby, C
    Hult, K
    Brinck, T
    Berglund, P
    [J]. CHEMBIOCHEM, 2005, 6 (02) : 331 - 336
  • [8] Probing the origin of the compromised catalysis of E-coli Alkaline phosphatase in its promiscuous sulfatase reaction
    Catrina, Irina
    O'Brien, Patrick J.
    Purcell, Jamie
    Nikolic-Hughes, Ivana
    Zalatan, Jesse G.
    Hengge, Alvan C.
    Herschlag, Daniel
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (17) : 5760 - 5765
  • [9] Enzymatic mechanisms of phosphate and sulfate transfer
    Cleland, W. Wallace
    Hengge, Alvan C.
    [J]. CHEMICAL REVIEWS, 2006, 106 (08) : 3252 - 3278
  • [10] Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine
    Dierks, T
    Miech, C
    Hummerjohann, J
    Schmidt, B
    Kertesz, MA
    von Figura, K
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (40) : 25560 - 25564