The microRNAs of Caenorhabditis elegans

被引:903
作者
Lim, LP
Lau, NC
Weinstein, EG
Abdelhakim, A
Yekta, S
Rhoades, MW
Burge, CB
Bartel, DP
机构
[1] MIT, Dept Biol, Cambridge, MA 02142 USA
[2] Whitehead Inst Biomed Res, Cambridge, MA 02142 USA
关键词
miRNA; noncoding RNA; computational gene identification; Dicer;
D O I
10.1101/gad.1074403
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
MicroRNAs (miRNAs) are an abundant class of tiny RNAs thought to regulate the expression of protein-coding genes in plants and animals. In the present study, we describe a computational procedure to identify miRNA genes conserved in more than one genome. Applying this program, known as MiRscan, together with molecular identification and validation methods, we have identified most of the miRNA genes in the nematode Caenorhabditis elegans. The total number of validated miRNA genes stands at 88, with no more than 35 genes remaining to be detected or validated. These 88 miRNA genes represent 48 gene families; 46 of these families (comprising 86 of the 88 genes) are conserved in Caenorhabditis briggsae, and 22 families are conserved in humans. More than a third of the worm miRNAs, including newly identified members of the lin-4 and let-7 gene families, are differentially expressed during larval development, suggesting a role for these miRNAs in mediating larval developmental transitions. Most are present at very high steady-state levels-more than 1000 molecules per cell, with some exceeding 50,000 molecules per cell. Our census of the worm miRNAs and their expression patterns helps define this class of noncoding RNAs, lays the groundwork for functional studies, and provides the tools for more comprehensive analyses of miRNA genes in other species.
引用
收藏
页码:991 / 1008
页数:18
相关论文
共 72 条
  • [1] A uniform system for microRNA annotation
    Ambros, V
    Bartel, B
    Bartel, DP
    Burge, CB
    Carrington, JC
    Chen, XM
    Dreyfuss, G
    Eddy, SR
    Griffiths-Jones, S
    Marshall, M
    Matzke, M
    Ruvkun, G
    Tuschl, T
    [J]. RNA, 2003, 9 (03) : 277 - 279
  • [2] Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D-melanogaster germline
    Aravin, AA
    Naumova, NM
    Tulin, AV
    Vagin, VV
    Rozovsky, YM
    Gvozdev, VA
    [J]. CURRENT BIOLOGY, 2001, 11 (13) : 1017 - 1027
  • [3] Novel small RNA-encoding genes in the intergenic regions of Escherichia coli
    Argaman, L
    Hershberg, R
    Vogel, J
    Bejerano, G
    Wagner, EGH
    Margalit, H
    Altuvia, S
    [J]. CURRENT BIOLOGY, 2001, 11 (12) : 941 - 950
  • [4] BEANAN MJ, 1992, DEVELOPMENT, V116, P755
  • [5] Role for a bidentate ribonuclease in the initiation step of RNA interference
    Bernstein, E
    Caudy, AA
    Hammond, SM
    Hannon, GJ
    [J]. NATURE, 2001, 409 (6818) : 363 - 366
  • [6] BROVERMAN SA, 1994, GENETICS, V136, P119
  • [7] Finding the genes in genomic DNA
    Burge, CB
    Karlin, S
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (03) : 346 - 354
  • [8] Genome sequence of the nematode C-elegans:: A platform for investigating biology
    不详
    [J]. SCIENCE, 1998, 282 (5396) : 2012 - 2018
  • [9] Fragile X-related protein and VIG associate with the RNA interference machinery
    Caudy, AA
    Myers, M
    Hannon, GJ
    Hammond, SM
    [J]. GENES & DEVELOPMENT, 2002, 16 (19) : 2491 - 2496
  • [10] Comparison of the complete protein sets of worm and yeast: Orthology and divergence
    Chervitz, SA
    Aravind, L
    Sherlock, G
    Ball, CA
    Koonin, EV
    Dwight, SS
    Harris, MA
    Dolinski, K
    Mohr, S
    Smith, T
    Weng, S
    Cherry, JM
    Botstein, D
    [J]. SCIENCE, 1998, 282 (5396) : 2022 - 2028