RNA looping by PTB: Evidence using FRET and NMR spectroscopy for a role in splicing repression

被引:85
作者
Lamichhane, Rajan [2 ]
Daubner, Gerrit M. [1 ]
Thomas-Crusells, Judith [1 ]
Auweter, Sigrid D. [1 ]
Manatschal, Cristina [1 ]
Austin, Keyunna S. [2 ]
Valniuk, Oksana [2 ]
Allain, Frederic H. -T. [1 ]
Rueda, David [2 ]
机构
[1] ETH, Inst Mol Biol & Biophys, CH-8093 Zurich, Switzerland
[2] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA
基金
美国国家科学基金会; 美国国家卫生研究院; 瑞士国家科学基金会;
关键词
alternative splicing; polypyrimidine tract-binding protein; protein-RNA interactions; TRACT-BINDING-PROTEIN; EXON DEFINITION; ENERGY-TRANSFER; COMPLEX; EXPRESSION; INCLUSION; MOLECULE; DOMAIN; MOTIF; TIME;
D O I
10.1073/pnas.0907072107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Alternative splicing plays an important role in generating proteome diversity. The polypyrimidine tract-binding protein (PTB) is a key alternative splicing factor involved in exon repression. It has been proposed that PTB acts by looping out exons flanked by pyrimidine tracts. We present fluorescence, NMR, and in vivo splicing data in support of a role of PTB in inducing RNA loops. We show that the RNA recognition motifs (RRMs) 3 and 4 of PTB can bind two distant pyrimidine tracts and bring their 5' and 3' ends in close proximity, thus looping the RNA. Efficient looping requires an intervening sequence of 15 nucleotides or longer between the pyrimidine tracts. RRM3 and RRM4 bind the 5' and the 3' pyrimidine tracts, respectively, in a specific directionality and work synergistically for efficient splicing repression in vivo.
引用
收藏
页码:4105 / 4110
页数:6
相关论文
共 35 条
[1]   Exploring RNA folding one molecule at a time [J].
Aleman, Elvin A. ;
Lamichhane, Rajan ;
Rueda, David .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2008, 12 (06) :647-654
[2]   Exon repression by polypyrimidine tract binding protein [J].
Amir-Ahmady, B ;
Boutz, PL ;
Markovtsov, V ;
Phillips, ML ;
Black, DL .
RNA, 2005, 11 (05) :699-716
[3]   Structure-function relationships of the polypyrimidine tract binding protein [J].
Auweter, S. D. ;
Allain, F. H. -T. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2008, 65 (04) :516-527
[4]   Solving the structure of PTB in complex with pyrimidine tracts: An NMR study of protein-RNA complexes of weak affinities [J].
Auweter, Sigrid D. ;
Oberstrass, Florian C. ;
Allain, Frederic H. -T .
JOURNAL OF MOLECULAR BIOLOGY, 2007, 367 (01) :174-186
[5]  
Black D L, 2003, Prog Mol Subcell Biol, V31, P187
[6]   Polypyrimidine tract binding protein modulates efficiency of polyadenylation [J].
Castelo-Branco, P ;
Furger, A ;
Wollerton, M ;
Smith, C ;
Moreira, A ;
Proudfoot, N .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (10) :4174-4183
[7]   Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase [J].
Ha, T ;
Rasnik, I ;
Cheng, W ;
Babcock, HP ;
Gauss, GH ;
Lohman, TM ;
Chu, S .
NATURE, 2002, 419 (6907) :638-641
[8]   Internal ribosome entry sites in eukaryotic mRNA molecules [J].
Hellen, CUT ;
Sarnow, P .
GENES & DEVELOPMENT, 2001, 15 (13) :1593-1612
[9]   Regulation of fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition [J].
Izquierdo, JM ;
Majós, N ;
Bonnal, S ;
Martínez, C ;
Castelo, R ;
Guigó, R ;
Bilbao, D ;
Valcárcel, J .
MOLECULAR CELL, 2005, 19 (04) :475-484
[10]   SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA) [J].
Karzai, AW ;
Susskind, MM ;
Sauer, RT .
EMBO JOURNAL, 1999, 18 (13) :3793-3799