Machine learning for many-body physics: The case of the Anderson impurity model

被引:116
作者
Arsenault, Louis-Francois [1 ]
Lopez-Bezanilla, Alejandro [2 ]
von Lilienfeld, O. Anatole [3 ,4 ]
Millis, Andrew J. [1 ]
机构
[1] Columbia Univ, Dept Phys, New York, NY 10027 USA
[2] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[3] Univ Basel, Dept Chem, Inst Phys Chem, CH-4056 Basel, Switzerland
[4] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA
基金
瑞士国家科学基金会;
关键词
POTENTIAL-ENERGY SURFACES; INFINITE DIMENSIONS; HUBBARD-MODEL; FERMIONS; LIMIT;
D O I
10.1103/PhysRevB.90.155136
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Machine learning methods are applied to finding the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. The results indicate that a machine learning approach to dynamical mean-field theory may be feasible.
引用
收藏
页数:16
相关论文
共 34 条
[11]   Continuous-time Monte Carlo methods for quantum impurity models [J].
Gull, Emanuel ;
Millis, Andrew J. ;
Lichtenstein, Alexander I. ;
Rubtsov, Alexey N. ;
Troyer, Matthias ;
Werner, Philipp .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :349-404
[12]   THEORY OF THE ATOMIC LIMIT OF THE ANDERSON MODEL .1. PERTURBATION EXPANSIONS REEXAMINED [J].
HALDANE, FDM .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1978, 11 (24) :5015-5034
[13]   A FAST, SIMPLE, AND STABLE CHEBYSHEV-LEGENDRE TRANSFORM USING AN ASYMPTOTIC FORMULA [J].
Hale, Nicholas ;
Townsend, Alex .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (01) :A148-A167
[14]   Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies [J].
Hansen, Katja ;
Montavon, Gregoire ;
Biegler, Franziska ;
Fazli, Siamac ;
Rupp, Matthias ;
Scheffler, Matthias ;
von Lilienfeld, O. Anatole ;
Tkatchenko, Alexandre ;
Mueller, Klaus-Robert .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (08) :3404-3419
[15]  
Hastie T., 2009, ELEMENTS STAT LEARNI, DOI DOI 10.1007/978-0-387-84858-7
[16]   Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base [J].
Haule, Kristjan .
PHYSICAL REVIEW B, 2007, 75 (15)
[17]   MONTE-CARLO METHOD FOR MAGNETIC-IMPURITIES IN METALS [J].
HIRSCH, JE ;
FYE, RM .
PHYSICAL REVIEW LETTERS, 1986, 56 (23) :2521-2524
[18]   HUBBARD-MODEL IN INFINITE DIMENSIONS - A QUANTUM MONTE-CARLO STUDY [J].
JARRELL, M .
PHYSICAL REVIEW LETTERS, 1992, 69 (01) :168-171
[19]   Dynamical properties of the Anderson impurity model within a diagrammatic pseudoparticle approach -: art. no. 165102 [J].
Kirchner, S ;
Kroha, J ;
Wölfle, P .
PHYSICAL REVIEW B, 2004, 70 (16) :1-14
[20]   Analytical Approximation for Single-Impurity Anderson Model [J].
Krivenko, I. S. ;
Rubtsov, A. N. ;
Katsnelson, M. I. ;
Lichtenstein, A. I. .
JETP LETTERS, 2010, 91 (06) :319-325