Stability of solitons described by nonlinear Schrodinger-type equations with higher-order dispersion

被引:231
作者
Karpman, VI [1 ]
Shagalov, AG
机构
[1] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[2] Russian Acad Sci, Inst Met Phys, Ural Branch, Ekaterinburg 620219, Russia
关键词
nonlinear Schrodinger-type equation; power-law nonlinearity; solitons;
D O I
10.1016/S0167-2789(00)00078-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Steady solitons described by the fourth order nonlinear Schrodinger type equations in one, two and three dimensions with power-law nonlinearities are studied. Conditions of existence and stability of such solitons are found. Numerical results demonstrating soliton existence, stability and instability are described. They agree with the developed theory. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:194 / 210
页数:17
相关论文
共 24 条
[1]   Two-dimensional solitary-waves in media with quadratic and cubic nonlinearity [J].
Bang, O ;
Kivshar, YS ;
Buryak, AV ;
De Rossi, A ;
Trillo, S .
PHYSICAL REVIEW E, 1998, 58 (04) :5057-5069
[2]   SUBCRITICAL LOCALIZATION IN THE DISCRETE NONLINEAR SCHRODINGER-EQUATION WITH ARBITRARY POWER NONLINEARITY [J].
BANG, O ;
RASMUSSEN, JJ ;
CHRISTIANSEN, PL .
NONLINEARITY, 1994, 7 (01) :205-218
[3]  
Berg EP, 1998, J ANIM SCI, V76, P18
[4]   A modulation method for self-focusing in the perturbed critical nonlinear Schrodinger equation [J].
Fibich, G ;
Papanicolaou, G .
PHYSICS LETTERS A, 1998, 239 (03) :167-173
[5]   The nonlinear Schrodinger system: Collapse, nonlinear damping, noise, impurities and nonlocal dispersion [J].
Gaididei, YB ;
Mingaleev, SF ;
Yakimenko, II ;
Christiansen, PL ;
Johansson, M ;
Rasmussen, KO .
PHYSICA SCRIPTA, 1996, T67 :151-159
[6]  
IVANOV BA, 1983, FIZ NIZK TEMP+, V9, P845
[7]   SOLITONS OF THE 4TH-ORDER NONLINEAR SCHRODINGER-EQUATION [J].
KARPMAN, VI .
PHYSICS LETTERS A, 1994, 193 (04) :355-358
[8]   SOLITONS OF THE 4TH ORDER NONLINEAR SCHRODINGER-EQUATION (VOL 193, PG 355, 1994) [J].
KARPMAN, VI .
PHYSICS LETTERS A, 1995, 198 (5-6) :469-469
[9]   Lyapunov approach to the soliton stability in highly dispersive systems. I. Fourth order nonlinear Schrodinger equations (vol 215, pg 257, 1996) [J].
Karpman, VI .
PHYSICS LETTERS A, 1999, 256 (5-6) :422-422
[10]   Lyapunov approach to the soliton stability in highly dispersive systems .1. Fourth order nonlinear Schrodinger equations [J].
Karpman, VI .
PHYSICS LETTERS A, 1996, 215 (5-6) :254-256