Structure and Function of Glycosylated Tandem Repeats from Candida albicans Als Adhesins

被引:45
作者
Frank, Aaron T. [2 ]
Ramsook, Caleen B. [1 ]
Otoo, Henry N. [1 ]
Tan, Cho [1 ]
Soybelman, Gregory [1 ]
Rauceo, Jason M. [3 ]
Gaur, Nand K. [4 ,5 ]
Klotz, Stephen A. [4 ,5 ]
Lipke, Peter N. [1 ]
机构
[1] CUNY Brooklyn Coll, Dept Biol, Brooklyn, NY 11210 USA
[2] Univ Michigan, Dept Biophys, Ann Arbor, MI 48109 USA
[3] CUNY John Jay Coll Criminal Justice, Dept Biol, New York, NY 10019 USA
[4] Univ Arizona, Tucson, AZ 85724 USA
[5] So Arizona VA Hlth Care Syst, Tucson, AZ 85724 USA
关键词
PROTEIN SECONDARY STRUCTURE; CIRCULAR-DICHROISM SPECTRA; CELL-WALL ARCHITECTURE; AMINO-ACID-SEQUENCE; ALPHA-AGGLUTININ; YEAST; BINDING; PREDICTION; PEPTIDE; SURFACE;
D O I
10.1128/EC.00235-09
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Tandem repeat (TR) regions are common in yeast adhesins, but their structures are unknown, and their activities are poorly understood. TR regions in Candida albicans Als proteins are conserved glycosylated 36-residue sequences with cell-cell aggregation activity (J. M. Rauceo, R. De Armond, H. Otoo, P. C. Kahn, S. A. Klotz, N. K. Gaur, and P. N. Lipke, Eukaryot. Cell 5:1664-1673, 2006). Ab initio modeling with either Rosetta or LINUS generated consistent structures of three-stranded antiparallel beta-sheet domains, whereas randomly shuffled sequences with the same composition generated various structures with consistently higher energies. O-and N-glycosylation patterns showed that each TR domain had exposed hydrophobic surfaces surrounded by glycosylation sites. These structures are consistent with domain dimensions and stability measurements by atomic force microscopy (D. Alsteen, V. Dupres, S. A. Klotz, N. K. Gaur, P. N. Lipke, and Y. F. Dufrene, ACS Nano 3:1677-1682, 2009) and with circular dichroism determination of secondary structure and thermal stability. Functional assays showed that the hydrophobic surfaces of TR domains supported binding to polystyrene surfaces and other TR domains, leading to nonsaturable homophilic binding. The domain structures are like "classic" subunit interaction surfaces and can explain previously observed patterns of promiscuous interactions between TR domains in any Als proteins or between TR domains and surfaces of other proteins. Together, the modeling techniques and the supporting data lead to an approach that relates structure and function in many kinds of repeat domains in fungal adhesins.
引用
收藏
页码:405 / 414
页数:10
相关论文
共 52 条
[51]   Environmentally induced reversible conformational switching in the yeast cell adhesion protein α-agglutinin [J].
Zhao, H ;
Chen, MH ;
Shen, ZM ;
Kahn, PC ;
Lipke, PN .
PROTEIN SCIENCE, 2001, 10 (06) :1113-1123
[52]   Analysis of ALS5 and ALS6 allelic variability in a geographically diverse collection of Candida albicans isolates [J].
Zhao, Xiaomin ;
Oh, Soon-Hwan ;
Jajko, Robert ;
Diekerna, Daniel J. ;
Pfaller, Michael A. ;
Pujol, Claude ;
Soll, David R. ;
Hoyer, Lois L. .
FUNGAL GENETICS AND BIOLOGY, 2007, 44 (12) :1298-1309