Impedance spectroscopy on pH-sensors with lithium lanthanum titanate sensitive material

被引:30
作者
Bohnke, C [1 ]
Fourquet, JL [1 ]
机构
[1] Univ Maine, UMR 6010 CNRS, Fac Sci & Tech, Lab Fluorures, F-72085 Le Mans, France
关键词
pH-sensor; lithium lanthanum titanate; perovskite; complex impedance spectroscopy;
D O I
10.1016/S0013-4686(03)00260-3
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The ceramic Li3xLa2/3-x,1/3-2xTiO3 is used, in an all-solid-state configuration, as pH-sensor in aqueous buffer solution. This ceramic displays a pH sensitivity comparable to the one obtained with a commercial glass electrode and does not show any sensitivity to the redox potential of the solution. This is one of the remarkable properties of this ceramic pH-sensor. It is shown in this paper that the reproducibility and the behaviour of the pH-response depend on the morphology of the grain boundaries particularly on the size of the grains. A so-called 'good' pH-response is obtained with a ceramic showing big and homogeneous grains. Complex impedance spectroscopy reveals that such ceramic has a high grain boundary resistance. Furthermore, this electrochemical technique allows us to determine that the interface reaction involved in the pH detection has a time constant of the order of the second. Several assumptions such as ion exchange or acid-base reaction are proposed to explain the sensitivity of the ceramic material to the pH of the solution. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1869 / 1878
页数:10
相关论文
共 29 条
[11]   Structural and microstructural studies of the series La2/3-xLi3x square 1/3-2xTiO3 [J].
Fourquet, JL ;
Duroy, H ;
CrosnierLopez, MP .
JOURNAL OF SOLID STATE CHEMISTRY, 1996, 127 (02) :283-294
[12]   METAL-METAL OXIDE AND METAL-OXIDE ELECTRODES AS PH SENSORS [J].
GLAB, S ;
HULANICKI, A ;
EDWALL, G ;
INGMAN, F .
CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, 1989, 21 (01) :29-47
[13]   A method of reducing oxygen induced drift in iridium oxide pH sensors [J].
Hendrikse, J ;
Olthuis, W ;
Bergveld, P .
SENSORS AND ACTUATORS B-CHEMICAL, 1998, 53 (1-2) :97-103
[14]   Crystal structure of a lithium ion-conducting perovskite La2/3-xLi3xTiO3 (x=0.05) [J].
Inaguma, Y ;
Katsumata, T ;
Itoh, M ;
Morii, Y .
JOURNAL OF SOLID STATE CHEMISTRY, 2002, 166 (01) :67-72
[15]   CANDIDATE COMPOUNDS WITH PEROVSKITE STRUCTURE FOR HIGH LITHIUM IONIC-CONDUCTIVITY [J].
INAGUMA, Y ;
CHEN, LQ ;
ITOH, M ;
NAKAMURA, T .
SOLID STATE IONICS, 1994, 70 :196-202
[16]   LITHIUM ION CONDUCTIVITY OF A-SITE DEFICIENT PEROVSKITE SOLID-SOLUTION LA0.67-XLI3XTIO3 [J].
KAWAI, H ;
KUWANO, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (07) :L78-L79
[17]  
KRESSROGERS E, 1991, TRENDS FOOD SCI TECH, V12, P320
[18]   Electrochemical recovery and isotope separation of lithium ion employing lithium ion conductive perovskite-type oxides [J].
Kunugi, S ;
Inaguma, Y ;
Itoh, M .
SOLID STATE IONICS, 1999, 122 (1-4) :35-39
[19]  
Macdonald J. R., 1987, IMPEDANCE SPECTROSCO
[20]   NEW ASPECTS OF SOME SMALL-SIGNAL AC FREQUENCY-RESPONSE FUNCTIONS [J].
MACDONALD, JR .
SOLID STATE IONICS, 1985, 15 (02) :159-161