Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D-optimality experimental design

被引:85
作者
Chen, S [1 ]
Hong, X
Harris, CJ
机构
[1] Univ Southampton, Dept Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[2] Univ Reading, Dept Cybernet, Reading RG6 6AY, Berks, England
关键词
Bayesian learning; D-optimality; optimal experimental design; orthogonal least squares; regularization; sparse modeling;
D O I
10.1109/TAC.2003.812790
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The note proposes an efficient nonlinear identification algorithm by combining a locally regularized orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximized model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of producing a very parsimonious model with excellent generalization performance. The D-optimality design criterion further enhances the model efficiency and robustness. An added advantage is that the user only needs to specify a weighting for the D-optimality cost in the combined model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting does not influence the model selection procedure critically and it can be chosen with ease from a wide range of values.
引用
收藏
页码:1029 / 1036
页数:8
相关论文
共 20 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
Atkinson A.C., 1992, OPTIMUM EXPT DESIGNS
[3]   EXTENDED MODEL SET, GLOBAL DATA AND THRESHOLD-MODEL IDENTIFICATION OF SEVERELY NON-LINEAR SYSTEMS [J].
BILLINGS, SA ;
CHEN, S .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 50 (05) :1897-1923
[4]   THE IDENTIFICATION OF LINEAR AND NON-LINEAR MODELS OF A TURBOCHARGED AUTOMOTIVE DIESEL-ENGINE [J].
BILLINGS, SA ;
CHEN, S ;
BACKHOUSE, RJ .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1989, 3 (02) :123-142
[5]   Improving the Generalization Properties of Radial Basis Function Neural Networks [J].
Bishop, Chris .
NEURAL COMPUTATION, 1991, 3 (04) :579-588
[6]   ORTHOGONAL LEAST-SQUARES METHODS AND THEIR APPLICATION TO NON-LINEAR SYSTEM-IDENTIFICATION [J].
CHEN, S ;
BILLINGS, SA ;
LUO, W .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 50 (05) :1873-1896
[7]   Regularized orthogonal least squares algorithm for constructing radial basis function networks [J].
Chen, S ;
Chng, ES ;
Alkadhimi, K .
INTERNATIONAL JOURNAL OF CONTROL, 1996, 64 (05) :829-837
[8]   REPRESENTATIONS OF NON-LINEAR SYSTEMS - THE NARMAX MODEL [J].
CHEN, S ;
BILLINGS, SA .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 49 (03) :1013-1032
[9]   ORTHOGONAL LEAST-SQUARES LEARNING ALGORITHM FOR RADIAL BASIS FUNCTION NETWORKS [J].
CHEN, S ;
COWAN, CFN ;
GRANT, PM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (02) :302-309
[10]   FAST ORTHOGONAL LEAST-SQUARES ALGORITHM FOR EFFICIENT SUBSET MODEL SELECTION [J].
CHEN, S ;
WIGGER, J .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (07) :1713-1715