High-Throughput Microarray Profiling of Cell Wall Polymers During Hydrothermal Pre-Treatment of Wheat Straw

被引:26
作者
Alonso-Simon, Ana [2 ]
Kristensen, Jan Bach [1 ]
Obro, Jens [2 ]
Felby, Claus [1 ]
Willats, William G. T. [2 ]
Jorgensen, Henning [1 ]
机构
[1] Univ Copenhagen, DK-1958 Frederiksberg, Denmark
[2] Univ Copenhagen, Dept Biol, Copenhagen, Denmark
关键词
hydrothermal pre-treatment; lignocellulose; wheat straw; microarray profiling; monoclonal antibody; PECTIC HOMOGALACTURONAN; MONOCLONAL-ANTIBODY; CELLULOSE; PLANTS; RICE;
D O I
10.1002/bit.22546
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Lignocellulosic plant material is potentially a sustainable source of fermentable sugars for bioethanol production. However, a barrier to this is the high resistance or recalcitrance of plant cell walls to be hydrolyzed. Therefore a detailed knowledge of the structural features of plant cell walls that contribute to recalcitrance is important for improving the efficiency of bioethanol production. In this work we have used a technique known as Comprehensive Microarray Polymer Profiling (CoMPP) to analyze wheat straw before and after being subjected to hydrothermal pre-treatments at four different temperatures. The CoMPP technique combines the specificity of monoclonal antibodies with the high-throughput capacity of microarrays. Changes in the relative abundance of cell wall polysaccharides could be tracked during processing, and a reduction in xylan, arabinoxylans, xyloglucan, and mixed-linked glucan epitopes was detected at the two highest temperatures of pre-treatment used. This work demonstrates the potential of CoMPP as a complementally technique to conventional methods for analyzing biomass composition. Biotechnol. Bioeng. 2010; 105: 509-514. (C) 2009 Wiley Periodicals, Inc.
引用
收藏
页码:509 / 514
页数:6
相关论文
共 22 条
[1]   Structure and biogenesis of the cell walls of grasses [J].
Carpita, NC .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1996, 47 :445-476
[2]  
Fry S. C, 1988, GROWING PLANT CELL W
[3]   Bio-ethanol -: the fuel of tomorrow from the residues of today [J].
Hahn-Hagerdal, B. ;
Galbe, M. ;
Gorwa-Grauslund, M. F. ;
Liden, G. ;
Zacchi, G. .
TRENDS IN BIOTECHNOLOGY, 2006, 24 (12) :549-556
[4]   Biomass recalcitrance: Engineering plants and enzymes for biofuels production [J].
Himmel, Michael E. ;
Ding, Shi-You ;
Johnson, David K. ;
Adney, William S. ;
Nimlos, Mark R. ;
Brady, John W. ;
Foust, Thomas D. .
SCIENCE, 2007, 315 (5813) :804-807
[5]   Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1->4)-beta-D-galactan [J].
Jones, L ;
Seymour, GB ;
Knox, JP .
PLANT PHYSIOLOGY, 1997, 113 (04) :1405-1412
[6]   Effect of structural features on enzyme digestibility of corn stover [J].
Kim, S ;
Holtzapple, MT .
BIORESOURCE TECHNOLOGY, 2006, 97 (04) :583-591
[7]   Cell-wall structural changes in wheat straw pretreated for bioethanol production [J].
Kristensen, Jan B. ;
Thygesen, Lisbeth G. ;
Felby, Claus ;
Jorgensen, Henning ;
Elder, Thomas .
BIOTECHNOLOGY FOR BIOFUELS, 2008, 1 (1)
[8]   CELLULOSE TO SUGARS - NEW PATH GIVES QUANTITATIVE YIELD [J].
LADISCH, MR ;
LADISCH, CM ;
TSAO, GT .
SCIENCE, 1978, 201 (4357) :743-745
[9]   The IBUS process - Lignocellulosic bioethanol close to a commercial reality [J].
Larsen, Jan ;
Petersen, Mai Ostergaard ;
Thirup, Laila ;
Li, Hong Wen ;
Iversen, Frank Krogh .
CHEMICAL ENGINEERING & TECHNOLOGY, 2008, 31 (05) :765-772
[10]   Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls [J].
Marcus, Susan E. ;
Verhertbruggen, Yves ;
Herve, Cecile ;
Ordaz-Ortiz, Jose J. ;
Farkas, Vladimir ;
Pedersen, Henriette L. ;
Willats, William G. T. ;
Knox, J. Paul .
BMC PLANT BIOLOGY, 2008, 8 (1)