Finding optimal neural networks for land use classification

被引:40
作者
Bischof, H [1 ]
Leonardis, A
机构
[1] Vienna Tech Univ, Pattern Recognit & Image Proc Grp, A-1040 Vienna, Austria
[2] Univ Ljubljana, Fac Comp & Informat Sci, Ljubljana, Slovenia
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 1998年 / 36卷 / 01期
关键词
Gaussian maximum likelihood classifier; land use classification; minimum description length (MDL); multilayer perceptron; optimizing neural networks;
D O I
10.1109/36.655348
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this communications, we present a fully automatic and computationally efficient algorithm based on the minimum description length principle (MDL) for optimizing multilayer perceptron (MLP) classifiers. We demonstrate our method on the problem of multispectral Landsat image classification. We compare our results with a hand-designed MLP and a Gaussian maximum likelihood classifier, in which our method produces better classification accuracy with a smaller number of hidden units.
引用
收藏
页码:337 / 341
页数:5
相关论文
共 16 条
  • [1] MULTISPECTRAL CLASSIFICATION OF LANDSAT-IMAGES USING NEURAL NETWORKS
    BISCHOF, H
    SCHNEIDER, W
    PINZ, AJ
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1992, 30 (03): : 482 - 490
  • [2] BISCHOF H, 1995, PYRAMIDAL NEURAL NET
  • [3] Cichocki A., 1993, Neural Networks for Optimization and Signal Processing
  • [4] GREENSPAN HK, 1993, ADV NEURAL INFORMATI, V5, P425
  • [5] APPLICATION OF NEURAL NETWORKS TO RADAR IMAGE CLASSIFICATION
    HARA, Y
    ATKINS, RG
    YUEH, SH
    SHIN, RT
    KONG, JA
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1994, 32 (01): : 100 - 109
  • [6] Hart P.E., 1973, Pattern recognition and scene analysis
  • [7] Hassibi B., 1992, ADV NEURAL INFORM PR, V5
  • [8] Hinton G. E., 1986, PARALLEL DISTRIBUTED, V1, P77
  • [9] LECUN YL, 1988, ADV NEURAL INFORMATI, V2, P598
  • [10] SEGMENTATION OF RANGE IMAGES AS THE SEARCH FOR GEOMETRIC PARAMETRIC MODELS
    LEONARDIS, A
    GUPTA, A
    BAJCSY, R
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1995, 14 (03) : 253 - 277