Nanoscale residual stress-field mapping around nanoindents in SiC by IR s-SNOM and confocal Raman microscopy

被引:34
作者
Gigler, Alexander M. [1 ,2 ]
Huber, Andreas J. [2 ,3 ,4 ]
Bauer, Michael [1 ,2 ]
Ziegler, Alexander [4 ]
Hillenbrand, Rainer [2 ,3 ]
Stark, Robert W. [1 ,2 ]
机构
[1] Univ Munich, Dept Earth & Environm Sci, D-80333 Munich, Germany
[2] Ctr NanoSci, D-80799 Munich, Germany
[3] CIC NanoGUNE Consolider, Nanoopt Lab, Donostia San Sebastian 20018, Spain
[4] Max Planck Inst Biochem, D-82152 Martinsried, Germany
来源
OPTICS EXPRESS | 2009年 / 17卷 / 25期
关键词
SILICON-CARBIDE; ULTRAHIGH PRESSURES; OPTICAL PHONONS; 6H POLYTYPE; STRAIN; SPECTROSCOPY; SCATTERING; MODES;
D O I
10.1364/OE.17.022351
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We map a nanoindent in a silicon carbide (SiC) crystal by infrared (IR) scattering-type scanning near-field optical microscopy (s-SNOM) and confocal Raman microscopy and interpret the resulting images in terms of local residual stress-fields. By comparing near-field IR and confocal Raman images, we find that the stress-induced shifts of the longitudinal optical phonon-frequencies (LO) and the related shift of the phonon-polariton near-field resonance give rise to Raman and s-SNOM image contrasts, respectively. We apply single-frequency IR s-SNOM for nanoscale resolved imaging of local stress-fields and confocal Raman microscopy to obtain the complete spectral information about stress-induced shifts of the phonon frequencies at diffraction limited spatial resolution. The spatial extension of the local stress-field around the nanoindent agrees well between both techniques. Our results demonstrate that both methods ideally complement each other, allowing for the detailed analysis of stress-fields at e. g. material and grain boundaries, in Micro-Electro-Mechanical-Systems (MEMS), or in engineered nanostructures. (C) 2009 Optical Society of America
引用
收藏
页码:22351 / 22357
页数:7
相关论文
共 40 条
[1]  
Baliga J., 2005, SILICON CARBIDE POWE
[2]   Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy [J].
Bauer, M. ;
Gigler, A. M. ;
Richter, C. ;
Stark, R. W. .
MICROELECTRONIC ENGINEERING, 2008, 85 (5-6) :1443-1446
[3]   Temperature-depending Raman line-shift of silicon carbide [J].
Bauer, Michael ;
Gigler, Alexander M. ;
Huber, Andreas J. ;
Hillenbrand, Rainer ;
Stark, Robert W. .
JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (12) :1867-1874
[4]   Grain orientation, texture, and internal stress optically evaluated by micro-Raman spectroscopy [J].
Becker, M. ;
Scheel, H. ;
Christiansen, S. ;
Strunk, H. P. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (06)
[5]   Invited Article: Simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy [J].
Beechem, Thomas ;
Graham, Samuel ;
Kearney, Sean P. ;
Phinney, Leslie M. ;
Serrano, Justin R. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (06)
[6]   Spatial characterization of doped SiC wafers by Raman spectroscopy [J].
Burton, JC ;
Sun, L ;
Pophristic, M ;
Lukacs, SJ ;
Long, FH ;
Feng, ZC ;
Ferguson, IT .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (11) :6268-6273
[7]   Tip-enhanced Raman spectroscopy of carbon nanotubes [J].
Cancado, Luiz Gustavo ;
Hartschuh, Achim ;
Novotny, Lukas .
JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (10) :1420-1426
[8]   Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus [J].
Cialla, Dana ;
Deckert-Gaudig, Tanja ;
Budich, Christian ;
Laue, Michael ;
Moeller, Robert ;
Naumann, Dieter ;
Deckert, Volker ;
Popp, Juergen .
JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (03) :240-243
[9]   Raman linewidths of optical phonons in 3C-SiC under pressure:: First-principles calculations and experimental results [J].
Debernardi, A ;
Ulrich, C ;
Syassen, K ;
Cardona, M .
PHYSICAL REVIEW B, 1999, 59 (10) :6774-6783
[10]   Transparent Silver Microcrystals: Synthesis and Application for Nanoscale Analysis [J].
Deckert-Gaudig, Tanja ;
Erver, Florian ;
Deckert, Volker .
LANGMUIR, 2009, 25 (11) :6032-6034