Consistent description of quantum Brownian motors operating at strong friction -: art. no. 031107

被引:60
作者
Machura, L
Kostur, M
Hänggi, P
Talkner, P
Luczka, J
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
[2] Univ Silesia, Inst Phys, P-40007 Katowice, Poland
来源
PHYSICAL REVIEW E | 2004年 / 70卷 / 03期
关键词
D O I
10.1103/PhysRevE.70.031107
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A quantum Smoluchowski equation is put forward that consistently describes thermal quantum states. In particular, it notably does not induce a violation of the second law of thermodynamics. This so modified kinetic equation is applied to study analytically directed quantum transport at strong friction in arbitrarily shaped ratchet potentials that are driven by nonthermal two-state noise. Depending on the mutual interplay of quantum tunneling and quantum reflection these quantum corrections can induce both, a sizable enhancement or a suppression of transport. Moreover, the threshold for current reversals becomes markedly shifted due to such quantum fluctuations.
引用
收藏
页码:5 / 1
页数:5
相关论文
共 35 条
[1]  
ALICKI R, 1982, QUANTUM DYNAMICAL SE
[2]   Strong friction limit in quantum mechanics: The quantum Smoluchowski equation [J].
Ankerhold, J ;
Pechukas, P ;
Grabert, H .
PHYSICAL REVIEW LETTERS, 2001, 87 (08) :86802-1
[3]   Quantum decay rates for driven barrier potentials in the strong friction limit [J].
Ankerhold, J .
PHYSICAL REVIEW E, 2001, 64 (06) :4-060102
[4]   Brownian motors [J].
Astumian, RD ;
Hänggi, P .
PHYSICS TODAY, 2002, 55 (11) :33-39
[5]   Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions [J].
Banik, Suman Kumar ;
Bag, Bidhan Chandra ;
Ray, Deb Shankar .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (05) :1-051106
[6]   Quantum rectifiers from harmonic mixing [J].
Goychuk, I ;
Hanggi, P .
EUROPHYSICS LETTERS, 1998, 43 (05) :503-509
[7]   Nonadiabatic quantum Brownian rectifiers (vol 81, pg 649, 1998) [J].
Goychuk, I ;
Grifoni, M ;
Hanggi, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (13) :2837-2837
[8]   Nonadiabatic quantum Brownian rectifiers [J].
Goychuk, I ;
Grifoni, M ;
Hanggi, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (03) :649-652
[9]   QUANTUM BROWNIAN-MOTION - THE FUNCTIONAL INTEGRAL APPROACH [J].
GRABERT, H ;
SCHRAMM, P ;
INGOLD, GL .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 168 (03) :115-207
[10]   QUANTUM-THEORY OF THE DAMPED HARMONIC-OSCILLATOR [J].
GRABERT, H ;
WEISS, U ;
TALKNER, P .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1984, 55 (01) :87-94