Comparative fitness assessment of Anopheles stephensi transgenic lines receptive to site-specific integration

被引:36
作者
Amenya, D. A. [2 ,3 ]
Bonizzoni, M. [2 ,3 ]
Isaacs, A. T. [1 ]
Jasinskiene, N. [3 ]
Chen, H. [2 ]
Marinotti, O. [3 ]
Yan, G. [2 ]
James, A. A. [1 ,3 ]
机构
[1] Univ Calif Irvine, Dept Microbiol & Mol Genet, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Program Publ Hlth, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA
关键词
life-table analyses; site-specific recombination; hybridizations in situ; GERMLINE TRANSFORMATION; GENETIC MANIPULATION; GAMBIAE; VECTOR; CELLS;
D O I
10.1111/j.1365-2583.2009.00986.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genetically modified mosquitoes that are unable to transmit pathogens offer opportunities for controlling vector-borne diseases such as malaria and dengue. Site-specific gene recombination technologies are advantageous in the development of these insects because antipathogen effector genes can be inserted at integration sites in the genome that cause the least alteration in mosquito fitness. Here we describe Anopheles stephensi transgenic lines containing phi C31 attP 'docking' sites linked to a fluorescent marker gene. Chromosomal insertion sites were determined and life-table parameters were assessed for transgenic mosquitoes of each line. No significant differences in fitness between the transgenic and nontransgenic mosquitoes were detected in this study. These transgenic lines are suitable for future site-specific integrations of antiparasite transgenes into the attP sites.
引用
收藏
页码:263 / 269
页数:7
相关论文
共 19 条
[1]   Stable germline transformation of the malaria mosquito Anopheles stephensi [J].
Catteruccia, F ;
Nolan, T ;
Loukeris, TG ;
Blass, C ;
Savakis, C ;
Kafatos, FC ;
Crisanti, A .
NATURE, 2000, 405 (6789) :959-962
[2]   Impact of genetic manipulation on the fitness of Anopheles stephensi mosquitoes [J].
Catteruccia, F ;
Godfray, HCJ ;
Crisanti, A .
SCIENCE, 2003, 299 (5610) :1225-1227
[3]   ASSAY FOR MOVEMENT OF LEPIDOPTERAN TRANSPOSON IFP2 IN INSECT CELLS USING A BACULOVIRUS GENOME AS A TARGET DNA [J].
FRASER, MJ ;
CARY, L ;
BOONVISUDHI, K ;
WANG, HGH .
VIROLOGY, 1995, 211 (02) :397-407
[4]   Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element [J].
Grossman, GL ;
Rafferty, CS ;
Clayton, JR ;
Stevens, TK ;
Mukabayire, O ;
Benedict, MQ .
INSECT MOLECULAR BIOLOGY, 2001, 10 (06) :597-604
[5]   Germline transformation of Drosophila melanogaster with the piggyBac transposon vector [J].
Handler, AM ;
Harrell, RA .
INSECT MOLECULAR BIOLOGY, 1999, 8 (04) :449-457
[6]   Assessing fitness costs for transgenic Aedes aegypti expressing the GFP marker and transposase genes [J].
Irvin, N ;
Hoddle, MS ;
O'Brochta, DA ;
Carey, B ;
Atkinson, PW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (03) :891-896
[7]   Can transgenic mosquitoes afford the fiftess cost? [J].
Lambrechts, Louis ;
Koella, Jacob C. ;
Boete, Christophe .
TRENDS IN PARASITOLOGY, 2008, 24 (01) :4-7
[8]   Analysis of apyrase 5′ upstream region validates improved Anopheles gambiae transformation technique [J].
Lombardo F. ;
Lycett G.J. ;
Lanfrancotti A. ;
Coluzzi M. ;
Arcà B. .
BMC Research Notes, 2 (1)
[9]   Mosquito transgenesis: what is the fitness cost? [J].
Marrelli, Mauro T. ;
Moreira, Cristina K. ;
Kelly, David ;
Alphey, Luke ;
Jacobs-Lorena, Marcelo .
TRENDS IN PARASITOLOGY, 2006, 22 (05) :197-202
[10]   Malaria Control with Transgenic Mosquitoes [J].
Marshall, John M. ;
Taylor, Charles E. .
PLOS MEDICINE, 2009, 6 (02) :164-168