BOOST: A supervised approach for multiple sclerosis lesion segmentation

被引:27
作者
Cabezas, Mariano [1 ]
Oliver, Arnau [1 ]
Valverde, Sergi [1 ]
Beltran, Brigitte [2 ]
Freixenet, Jordi [1 ]
Vilanova, Joan C. [3 ]
Ramio-Torrenta, Lluis [2 ]
Rovira, Alex [4 ]
Llado, Xavier [1 ]
机构
[1] Univ Girona, Dept Comp Architecture & Technol, Girona 17071, Spain
[2] Dr Josep Trueta Univ Hosp, Multiple Sclerosis & Neuroimmunol Unit, Girona, Spain
[3] Girona Magnet Resonance Ctr, Girona, Spain
[4] Vall dHebron Univ Hosp, Dept Radiol, Magnet Resonance Unit, Girona, Spain
关键词
Multiple sclerosis; Brain analysis; Image analysis; Artificial intelligence; Magnetic resonance imaging; WHITE-MATTER LESIONS; BRAIN MRI; AUTOMATED SEGMENTATION; IMAGES; CLASSIFICATION; MULTICLASS;
D O I
10.1016/j.jneumeth.2014.08.024
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Automatic multiple sclerosis lesion segmentation is a challenging task. An extensive analysis of the most recent techniques indicates an improvement of the results obtained when using prior knowledge and contextual information. New method: We present BOOST, a knowledge-based approach to automatically segment multiple sclerosis lesions through a voxel by voxel classification. We used the Gentleboost classifier and a set of features, including contextual features, registered atlas probability maps and an outlier map. Results: Results are computed on a set of 45 cases from three different hospitals (15 of each), obtaining a moderate agreement between the manual annotations and the automatically segmented results. Comparison with existing method(s): We quantitatively compared our results with three public state-of-the-art approaches obtaining competitive results and a better overlap with manual annotations. Our approach tends to better segment those cases with high lesion load, while cases with small lesion load are more difficult to accurately segment. Conclusions: We believe BOOST has potential applicability in the clinical practice, although it should be improved in those cases with small lesion load. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:108 / 117
页数:10
相关论文
共 44 条
[1]   Probabilistic segmentation of white lesions in MR imaging [J].
Anbeek, P ;
Vincken, KL ;
van Osch, MJP ;
Bisschops, RHC ;
van der Grond, J .
NEUROIMAGE, 2004, 21 (03) :1037-1044
[2]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[3]  
Cabezas M, 2013, LECT NOTES COMPUT SC, V7887, P782
[4]   A review of atlas-based segmentation for magnetic resonance brain images [J].
Cabezas, Mariano ;
Oliver, Arnau ;
Llado, Xavier ;
Freixenet, Jordi ;
Cuadra, Meritxell Bach .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) :E158-E177
[5]   A Cellular Neural Network methodology for the automated segmentation of multiple sclerosis lesions [J].
Cerasa, Antonio ;
Bilotta, Eleonora ;
Augimeri, Antonio ;
Cherubini, Andrea ;
Pantano, Pietro ;
Zito, Giancarlo ;
Lanza, Pierluigi ;
Valentino, Paola ;
Gioia, Maria C. ;
Quattrone, Aldo .
JOURNAL OF NEUROSCIENCE METHODS, 2012, 203 (01) :193-199
[6]   Multiple sclerosis [J].
Compston, A ;
Coles, A .
LANCET, 2002, 359 (9313) :1221-1231
[7]   White matter lesion extension to automatic brain tissue segmentation on MRI [J].
de Boer, Renske ;
Vrooman, Henri A. ;
van der Lijn, Fedde ;
Vernooij, Meike W. ;
Ikram, M. Arfan ;
van der Lugt, Aad ;
Breteler, Monique M. B. ;
Niessen, Wiro J. .
NEUROIMAGE, 2009, 45 (04) :1151-1161
[8]   Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics [J].
Dietrich, Olaf ;
Raya, Jose G. ;
Reeder, Scott B. ;
Ingrisch, Michael ;
Reiser, Maximilian F. ;
Schoenberg, Stefan O. .
MAGNETIC RESONANCE IMAGING, 2008, 26 (06) :754-762
[9]   Intensity Based Methods for Brain MRI Longitudinal Registration. A Study on Multiple Sclerosis Patients [J].
Diez, Yago ;
Oliver, Arnau ;
Cabezas, Mariano ;
Valverde, Sergi ;
Marti, Robert ;
Carles Vilanova, Joan ;
Ramio-Torrenta, Lluis ;
Rovira, Alex ;
Llado, Xavier .
NEUROINFORMATICS, 2014, 12 (03) :365-379
[10]  
Finch H., 2005, Journal of Data Science, V3, P85, DOI [10.6339/JDS.2005.03(1).192, DOI 10.6339/JDS.2005.03(1).192]