Thermally nitrided stainless steels for polymer electrolyte membrane fuel cell bipolar plates -: Part 1:: Model Ni-50Cr and austenitic 349™ alloys

被引:120
作者
Wang, H
Brady, MP
Teeter, G
Turner, JA [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
thermal nitridation; Ni-based alloy; stainless steel; PEMFC; bipolar plate; corrosion;
D O I
10.1016/j.jpowsour.2004.06.067
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermal nitridation of a model Ni-50Cr alloy at 1100degreesC for 2 h in pure nitrogen resulted in the formation of a continuous, protective CrN/Cr2N surface layer with a low interfacial contact resistance. Application of similar nitridation parameters to an austenitic stainless steel, 349(TM), however, resulted in a discontinuous mixture of discrete CrN, Cr2N and (Cr,Fe)(2)N1-x (x = 0-0.5) phase surface particles overlying an exposed gamma austenite-based matrix, rather than a continuous nitride surface layer. The interfacial contact resistance of the 349(TM) was reduced significantly by the nitridation treatment. However, in the simulated PEMFC environments (1 M H2SO4 + 2 ppm F- solutions at 70degreesC sparged with either hydrogen or air), very high corrosion currents were observed under both anodic and cathodic conditions. This poor behavior was linked to the lack of continuity of the Cr-rich nitride surface formed on 349(TM). Issues regarding achieving continuous, protective Cr-nitride surface layers on stainless steel alloys are discussed. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 93
页数:8
相关论文
共 15 条
[1]  
Borup RL, 1995, MATER RES SOC SYMP P, V393, P151, DOI 10.1557/PROC-393-151
[2]   Preferential thermal nitridation to form pin-hole free Cr-nitrides to protect proton exchange membrane fuel cell metallic bipolar plates [J].
Brady, MP ;
Weisbrod, K ;
Paulauskas, I ;
Buchanan, RA ;
More, KL ;
Wang, H ;
Wilson, M ;
Garzon, F ;
Walker, LR .
SCRIPTA MATERIALIA, 2004, 50 (07) :1017-1022
[3]   Assessment of thermal nitridation to protect metal bipolar plates in polymer electrolyte membrane fuel cells [J].
Brady, MP ;
Weisbrod, K ;
Zawodzinski, C ;
Paulauskas, I ;
Buchanan, RA ;
Walker, LR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (11) :A245-A247
[4]  
BRADY MP, 2003, P 2 EUR PEFC FOR LUC
[5]   Comparative studies of polymer electrolyte membrane fuel cell stack and single cell [J].
Chu, D ;
Jiang, RZ .
JOURNAL OF POWER SOURCES, 1999, 80 (1-2) :226-234
[6]   Stainless steel as a bipolar plate material for solid polymer fuel cells [J].
Davies, DP ;
Adcock, PL ;
Turpin, M ;
Rowen, SJ .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :237-242
[7]   Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells [J].
Hornung, R ;
Kappelt, G .
JOURNAL OF POWER SOURCES, 1998, 72 (01) :20-21
[8]   Electrochemical corrosion characteristics of type 316 stainless steel in simulated anode environment for PEMFC [J].
Li, MC ;
Zeng, CL ;
Luo, SZ ;
Shen, JN ;
Lin, HC ;
Cao, CN .
ELECTROCHIMICA ACTA, 2003, 48 (12) :1735-1741
[9]   Use of stainless steel for cost competitive bipolar plates in the SPFC [J].
Makkus, RC ;
Janssen, AHH ;
de Bruijn, FA ;
Mallant, RKAM .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :274-282
[10]  
SCHOLTA J, 1997, P 2 INT S NEW MAT FU, P300