Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools

被引:171
作者
Greenbaum, Jason A. [1 ]
Andersen, Pernille Haste
Blythe, Martin
Bui, Huynh-Hoa
Cachau, Raul E.
Crowe, James
Davies, Matthew
Kolaskar, A. S.
Lund, Ole
Morrison, Sherrie
Mumey, Brendan
Ofran, Yanay
Pellequer, Jean-Luc
Pinilla, Clemencia
Ponomarenko, Julia V.
Raghava, G. P. S.
van Regenmortel, Marc H. V.
Roggen, Erwin L.
Sette, Alessandro
Schlessinger, Avner
Sollner, Johannes
Zand, Martin
Peters, Bjoern
机构
[1] La Jolla Allergy & Immunol, IEDB, Immune Epitope Database & Anal Resource, La Jolla, CA USA
[2] Tech Univ Denmark, Bioctr, Ctr Biol Sequence Anal, Immunol Bioinformat Grp, DK-2800 Lyngby, Denmark
[3] Edward Jenner Inst Vaccine Res, Bioinformat Dept, Newbury, Berks, England
[4] NCI, Frederick Canc Res & Dev Ctr, Frederick Biomed Supercomp Ctr, Frederick, MD USA
[5] Vanderbilt Univ, Med Ctr, Dept Pediat, Nashville, TN 37232 USA
[6] Vanderbilt Univ, Med Ctr, Dept Microbiol, Nashville, TN 37232 USA
[7] Vanderbilt Univ, Med Ctr, Dept Immunol, Nashville, TN 37232 USA
[8] John Radcliffe Hosp, Nuffield Dept Clin Med, Oxford OX3 9DU, England
[9] Univ Pune, Bioinformat Ctr, Pune, Maharashtra, India
[10] Univ Calif Los Angeles, Los Angeles, CA 90024 USA
[11] Montclair State Univ, Dept Comp Sci, Bozeman, MT USA
[12] Tel Aviv Univ, Fac Life Sci, Dept Biochem, Ramat Aviv, Israel
[13] CEA Valrho, Ctr Marcoule, DSV, DIEP,SBTN, F-30207 Bagnols Sur Ceze, France
[14] Univ Calif San Diego, San Diego Supercomp Ctr, San Diego, CA 92103 USA
[15] Inst Microbial Technol, Bioinformat Ctr, Sector 39A, Changdigarh, India
[16] Ecole Super Biotechnol Strasbourg Parc Innovat, F-67412 Illkirch Graffenstaden, France
[17] Novozymes AS, Dept Pharma Prot Dev, Mol Biotechnol, DK-2880 Bagsvaerd, Denmark
[18] Columbia Univ, Ctr Computat Biol, Dept Biochem & Mol Biophys, New York, NY 10027 USA
[19] Emergentec, A-1010 Vienna, Austria
[20] Univ Rochester, Med Ctr, Ctr Biodef Immune Modeling, Rochester, NY 14627 USA
关键词
B-cell epitopes; epitope prediction; algorithms; immunology databases; data standardization; bioinformatics; software tools; tool development;
D O I
10.1002/jmr.815
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A B-cell epitope is the three-dimensional structure within an antigen that can be bound to the variable region of an antibody. The prediction of B-cell epitopes is highly desirable for various immunological applications, but has presented a set of unique challenges to the bioinformatics and immunology communities. Improving the accuracy of B-cell epitope prediction methods depends on a community consensus on the data and metrics utilized to develop and evaluate such tools. A workshop, sponsored by the National Institute of Allergy and Infectious Disease (NIAID), was recently held in Washington, DC to discuss the current state of the B-cell epitope prediction field. Many of the currently available tools were surveyed and a set of recommendations was devised to facilitate improvements in the currently existing tools and to expedite future tool development. An underlying theme of the recommendations put forth by the panel is increased collaboration among research groups. By developing common datasets, standardized data formats, and the means with which to consolidate information, we hope to greatly enhance the development of B-cell epitope prediction tools. Copyright (c) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 42 条
[1]   Prediction of residues in discontinuous B-cell epitopes using protein 3D structures [J].
Andersen, Pernille Haste ;
Nielsen, Morten ;
Lund, Ole .
PROTEIN SCIENCE, 2006, 15 (11) :2558-2567
[2]   An in silico method using an epitope motif database for predicting the location of antigenic determinants on proteins in a structural context [J].
Batori, V ;
Friis, EP ;
Nielsen, H ;
Roggen, EL .
JOURNAL OF MOLECULAR RECOGNITION, 2006, 19 (01) :21-29
[3]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[4]   Benchmarking B cell epitope prediction: Underperformance of existing methods [J].
Blythe, MJ ;
Flower, DR .
PROTEIN SCIENCE, 2005, 14 (01) :246-248
[5]   Improved prediction of protein-protein binding sites using a support vector machines approach [J].
Bradford, JR ;
Westhead, DR .
BIOINFORMATICS, 2005, 21 (08) :1487-1494
[6]   Computational methods for prediction of T-cell epitopes - a framework for modelling, testing, and applications [J].
Brusic, V ;
Bajic, VB ;
Petrovsky, N .
METHODS, 2004, 34 (04) :436-443
[7]   Structure prediction meta server [J].
Bujnicki, JM ;
Elofsson, A ;
Fischer, D ;
Rychlewski, L .
BIOINFORMATICS, 2001, 17 (08) :750-751
[8]  
Cachau RE, 2003, CELL MOL BIOL, V49, P973
[9]   CRYSTAL-STRUCTURE OF A PEPTIDE COMPLEX OF ANTIINFLUENZA PEPTIDE ANTIBODY-FAB-26/9 - COMPARISON OF 2 DIFFERENT ANTIBODIES BOUND TO THE SAME PEPTIDE ANTIGEN [J].
CHURCHILL, MEA ;
STURA, EA ;
PINILLA, C ;
APPEL, JR ;
HOUGHTEN, RA ;
KONO, DH ;
BALDERAS, RS ;
FIESER, GG ;
SCHULZEGAHMEN, U ;
WILSON, IA .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 241 (04) :534-556
[10]   ClusPro:: An automated docking and discrimination method for the prediction of protein complexes [J].
Comeau, SR ;
Gatchell, DW ;
Vajda, S ;
Camacho, CJ .
BIOINFORMATICS, 2004, 20 (01) :45-50