Growth and structure of internal Cu/Al2O3 and Cu/Ti/Al2O3 interfaces

被引:64
作者
Dehm, G
Scheu, C
Ruhle, M
Raj, R
机构
[1] Max Planck Inst Met Res, D-70174 Stuttgart, Germany
[2] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
关键词
D O I
10.1016/S1359-6454(97)00257-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thin Cu films and Cu/Ti bilayers were grown on (0001)alpha-Al2O3 by molecular beam epitaxy (MBE) at substrate temperatures ranging from 373 K to 473 K. Results on growth behaviour, low-energy interface orientation relationships and the nature of bonding at the interfaces are reported. Transmission electron microscopy (TEM) and in-situ reflection high-energy electron diffraction (RHEED) studies show that Cu/Ti bilayers nucleate and grow epitaxially on the Al2O3 substrates with an (111)(Cu)[110](Cu)parallel to(0001)(Ti)[<2(11)over bar 0>](Ti)parallel to(0001)(Al2O3) [<10(1)over bar 0>](Al2O3) orientation relationship. In contrast, Cu films on (0001)alpha-Al2O3 grow in two stages. Initially, the Cu nuclei have random orientation but they realign with increasing film thickness into an heteroepitaxial (111)(Cu)[110](Cu)parallel to(0001)(Al2)O-3[<10(1)over bar 0>](Al2)O-3 orientation relationship. In high-resolution transmission electron microscopy (HRTEM) no reaction phases are observed at the atomically sharp Cu/Al2O3 and Ti/Al2O3 interfaces. Electron energy-loss spectroscopy (EELS) of the interfaces reveals bonding between copper or titanium and the oxygen sublattice of Al2O3, The interfacial widths of copper and titanium atoms involved in the bonding are estimated using the characteristic absorption edge data. In the case of Ti/Al2O3 the interfacial width is estimated to be 0.5 nm +/- 0.1 nm. The lower affinity of Cu to oxygen results in a smaller interfacial width of 0.34 nm +/- 0.06 nm. These values correspond to the apparent fraction of the metal layers that participate in the bonding with the oxygen sublattice of (0001)alpha-Al2O3. (C) 1998 Acta Metallurgica Inc.
引用
收藏
页码:759 / 772
页数:14
相关论文
共 36 条
[1]  
[Anonymous], 1958, Z. Kristallogr
[2]   RADIATION-DAMAGE IN TIOX AT HIGH-CURRENT DENSITY [J].
BERGER, SD ;
MACAULAY, JM ;
BROWN, LM .
PHILOSOPHICAL MAGAZINE LETTERS, 1987, 56 (05) :179-185
[3]   L2,3 EDGES OF TETRAHEDRALLY COORDINATED D(0) TRANSITION-METAL OXYANIONS XO4N- [J].
BRYDSON, R ;
GARVIE, LAJ ;
CRAVEN, AJ ;
SAUER, H ;
HOFER, F ;
CRESSEY, G .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1993, 5 (50) :9379-9392
[4]   OXYGEN 1S X-RAY-ABSORPTION EDGES OF TRANSITION-METAL OXIDES [J].
DEGROOT, FMF ;
GRIONI, M ;
FUGGLE, JC ;
GHIJSEN, J ;
SAWATZKY, GA ;
PETERSEN, H .
PHYSICAL REVIEW B, 1989, 40 (08) :5715-5723
[5]   GROWTH AND STRUCTURE OF COPPER THIN-FILMS DEPOSITED ON (0001) SAPPHIRE BY MOLECULAR-BEAM EPITAXY [J].
DEHM, G ;
RUHLE, M ;
DING, G ;
RAJ, R .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1995, 71 (06) :1111-1124
[6]   A microindentation method for estimating interfacial shear strength and its use in studying the influence of titanium transition layers on the interface strength of epitaxial copper films on sapphire [J].
Dehm, G ;
Ruhle, M ;
Conway, HD ;
Raj, R .
ACTA MATERIALIA, 1997, 45 (02) :489-499
[7]   COPPER GROWTH ON AL2O3 AND AL - AN AUGER STUDY [J].
DICASTRO, V ;
POLZONETTI, G .
SURFACE SCIENCE, 1987, 189 :1085-1090
[8]  
Egerton R.F., 2011, Electron Energy-loss Spectroscopy in the Electron Microscope, Vthird, DOI DOI 10.1007/978-1-4419-9583-4
[9]  
FLYNN CP, 1990, METAL CERAMIC INTERF, P168
[10]  
FREY H, 1986, DUNNSCHICHTTECHNOLOG