An incomplete Cholesky factorization for dense symmetric positive definite matrices

被引:21
作者
Lin, CJ
Saigal, R
机构
[1] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 106, Taiwan
[2] Univ Michigan, Dept Ind & Operat Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
incomplete Cholesky factorization; conjugate gradient methods; dense linear systems;
D O I
10.1023/A:1022323931043
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we study the use of an incomplete Cholesky factorization (ICF) as a preconditioner for solving dense symmetric positive definite linear systems. This method is suitable for situations where matrices cannot be explicitly stored but each column can be easily computed. Analysis and implementation of this preconditioner are discussed. We test the proposed ICF on randomly generated systems and large matrices from two practical applications: semidefinite programming and support vector machines. Numerical comparison with the diagonal preconditioner is also presented.
引用
收藏
页码:536 / 558
页数:23
相关论文
共 41 条
[1]   Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results [J].
Alizadeh, F ;
Haeberly, JPA ;
Overton, ML .
SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (03) :746-768
[2]   Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics [J].
Alleon, G ;
Benzi, M ;
Giraud, L .
NUMERICAL ALGORITHMS, 1997, 16 (01) :1-15
[3]  
[Anonymous], 1998, Advances in Kernel Methods
[4]  
[Anonymous], ADV KERNEL METHODS
[5]  
Axelsson O., 1994, ITERATIVE SOLUTION M
[6]  
Benzi M, 1998, COMMUN NUMER METH EN, V14, P897, DOI 10.1002/(SICI)1099-0887(1998100)14:10<897::AID-CNM196>3.0.CO
[7]  
2-L
[8]  
BURKARD R, 1996, QAPLIB QUADRATIC ASS
[9]  
Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
[10]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411