An incomplete Cholesky factorization for dense symmetric positive definite matrices

被引:21
作者
Lin, CJ
Saigal, R
机构
[1] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 106, Taiwan
[2] Univ Michigan, Dept Ind & Operat Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
incomplete Cholesky factorization; conjugate gradient methods; dense linear systems;
D O I
10.1023/A:1022323931043
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we study the use of an incomplete Cholesky factorization (ICF) as a preconditioner for solving dense symmetric positive definite linear systems. This method is suitable for situations where matrices cannot be explicitly stored but each column can be easily computed. Analysis and implementation of this preconditioner are discussed. We test the proposed ICF on randomly generated systems and large matrices from two practical applications: semidefinite programming and support vector machines. Numerical comparison with the diagonal preconditioner is also presented.
引用
收藏
页码:536 / 558
页数:23
相关论文
共 41 条
[11]   LARGE DENSE NUMERICAL LINEAR ALGEBRA IN 1993 - THE PARALLEL COMPUTING INFLUENCE [J].
EDELMAN, A .
INTERNATIONAL JOURNAL OF SUPERCOMPUTER APPLICATIONS AND HIGH PERFORMANCE COMPUTING, 1993, 7 (02) :113-128
[12]  
GOEBEL K, 1996, SUN DEV NEWS, V1
[13]  
Golub G. H., 2013, Matrix Computations
[14]  
Goreinov SA, 1997, NUMER LINEAR ALGEBR, V4, P273, DOI 10.1002/(SICI)1099-1506(199707/08)4:4<273::AID-NLA97>3.0.CO
[15]  
2-T
[16]   LAPLACE EQUATION AND THE DIRICHLET-NEUMANN MAP IN MULTIPLY CONNECTED DOMAINS [J].
GREENBAUM, A ;
GREENGARD, L ;
MCFADDEN, GB .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 105 (02) :267-278
[17]  
Gustafsson I., 1978, BIT (Nordisk Tidskrift for Informationsbehandling), V18, P142, DOI 10.1007/BF01931691
[18]   AN IMPROVED INCOMPLETE CHOLESKY FACTORIZATION [J].
JONES, MT ;
PLASSMANN, PE .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (01) :5-17
[20]  
KOLOTILINA LY, 1988, J SOVIET MATH, V3, P2566