Numerical evolution of black holes with a hyperbolic formulation of general relativity

被引:33
作者
Scheel, MA
Baumgarte, TW
Cook, GB
Shapiro, SL
Teukolsky, SA
机构
[1] UNIV ILLINOIS,DEPT PHYS,URBANA,IL 61801
[2] UNIV ILLINOIS,DEPT ASTRON,URBANA,IL 61801
[3] UNIV ILLINOIS,NATL CTR SUPERCOMP APPLICAT,URBANA,IL 61801
[4] CORNELL UNIV,DEPT PHYS,ITHACA,NY 14853
[5] CORNELL UNIV,DEPT ASTRON,ITHACA,NY 14853
来源
PHYSICAL REVIEW D | 1997年 / 56卷 / 10期
关键词
D O I
10.1103/PhysRevD.56.6320
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe a numerical code that solves Einstein's equations for a Schwarzschild black hole in spherical symmmetry, using a hyperbolic formulation introduced by Choquet-Bruhat and York. This is the first time this formulation has been used to evolve a numerical spacetime containing a black here. We excise the hale from the computational grid in order to avoid the central singularity. We describe in detail a causal differencing method that should allow one to stably evolve a hyperbolic system of equations in three spatial dimensions with an arbitrary shift vector. to second-order accuracy in both space and time. We demonstrate the success of this method in the spherically symmetric case. [S0556-2821(97)06072-0].
引用
收藏
页码:6320 / 6335
页数:16
相关论文
共 30 条
[1]   EINSTEIN AND YANG-MILLS THEORIES IN HYPERBOLIC FORM WITHOUT GAUGE-FIXING [J].
ABRAHAMS, A ;
ANDERSON, A ;
CHOQUETBRUHAT, Y ;
YORK, JW .
PHYSICAL REVIEW LETTERS, 1995, 75 (19) :3377-3381
[2]   TIME-SYMMETRICAL ADI AND CAUSAL RECONNECTION - STABLE NUMERICAL TECHNIQUES FOR HYPERBOLIC SYSTEMS ON MOVING GRIDS [J].
ALCUBIERRE, M ;
SCHUTZ, BF .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 112 (01) :44-77
[3]   HORIZON BOUNDARY-CONDITION FOR BLACK-HOLE SPACETIMES [J].
ANNINOS, P ;
DAUES, G ;
MASSO, J ;
SEIDEL, E ;
SUEN, WM .
PHYSICAL REVIEW D, 1995, 51 (10) :5562-5578
[4]  
Arnowitt R, 1962, Gravitation: An Introduction to Current Research, P227
[5]   Implementing an apparent-horizon finder in three dimensions [J].
Baumgarte, TW ;
Cook, GB ;
Scheel, MA ;
Shapiro, SL ;
Teukolsky, SA .
PHYSICAL REVIEW D, 1996, 54 (08) :4849-4857
[6]   NEW FORMALISM FOR NUMERICAL RELATIVITY [J].
BONA, C ;
MASSO, J ;
SEIDEL, E ;
STELA, J .
PHYSICAL REVIEW LETTERS, 1995, 75 (04) :600-603
[7]   NUMERICAL BLACK-HOLES - A MOVING GRID APPROACH [J].
BONA, C ;
MASSO, J ;
STELA, J .
PHYSICAL REVIEW D, 1995, 51 (04) :1639-1645
[8]  
CHOQUETBRUHAT Y, 1995, CR ACAD SCI I-MATH, V321, P1089
[9]  
COOK GB, 1989, FRONTIERS NUMERICAL, P222
[10]  
EARDLEY DM, GRQC9703027