An Arabidopsis gene induced by wounding functionally homologous to flavoprotein oxidoreductases

被引:37
作者
Costa, CL
Arruda, P
Benedetti, CE
机构
[1] Univ Estadual Campinas, Ctr Biol Mol & Engn Genet, BR-13083970 Campinas, SP, Brazil
[2] Univ Estadual Campinas, Inst Biol, Dept Genet & Evolucao, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Arabidopsis; OPR3; flavoprotein oxidoreductase; wounding; methyl jasmonate;
D O I
10.1023/A:1006464822434
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The regulation of genes in response to wounding is mediated in part by the octadecanoids 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA) and its methyl ester methyl jasmonate (MeJA). We identified, by differential display, an Arabidopsis gene (OPR3) induced after wounding. OPR3 is homologous to members of the flavin mononucleotide (FMN) binding proteins, including the old yellow enzyme (OYE) from yeast and 12-oxophytodienoate-10,11-reductase (OPR) from Arabidopsis. Transcripts of OPR3 rapidly accumulated in leaves after wounding and MeJA treatment, but they were detected in various tissues of unwounded plants at relatively low levels. Expression of the OPR3 gene was significantly reduced in wounded leaves of the coi1 mutant, indicating partial dependence on jasmonate perception for full induction of the gene. The recombinant protein of OPR3 cross-reacted with an antiserum raised against the OYE protein, and showed oxidation of beta -NADPH when OPDA or 15-deoxy-Delta (12,14)-prostaglandin J2 (PGJ2), an analogue of OPDA, was used as substrate. beta -NADPH oxidation was not observed when MeJA, which lacks the double bond in the ketone ring, was used as substrate. The recombinant OPR3 protein also showed beta -NADPH oxidation activity in the presence of cyclohexenone, but not cyclohexanone, suggesting that the enzyme has specificity to cleavage of olefinic bonds in cyclic enones. The results show that the OPR3 gene product represents a new OPR of Arabidopsis induced after wounding.
引用
收藏
页码:61 / 71
页数:11
相关论文
共 52 条
[1]  
Ausubel FM., 1998, CURRENT PROTOCOLS MO
[2]   Jasmonate-induced responses are costly but benefit plants under attack in native populations [J].
Baldwin, IT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (14) :8113-8118
[3]   CHARACTERIZATION OF AN ARABIDOPSIS-LIPOXYGENASE GENE RESPONSIVE TO METHYL JASMONATE AND WOUNDING [J].
BELL, E ;
MULLET, JE .
PLANT PHYSIOLOGY, 1993, 103 (04) :1133-1137
[4]   Differential expression of a novel gene in response to coronatine, methyl jasmonate, and wounding in the coi1 mutant of Arabidopsis [J].
Benedetti, CE ;
Costa, CL ;
Turcinelli, SR ;
Arruda, P .
PLANT PHYSIOLOGY, 1998, 116 (03) :1037-1042
[5]   Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals [J].
Bergey, DR ;
Howe, GA ;
Ryan, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (22) :12053-12058
[6]   Structure and regulation of OPR1 and OPR2, two closely related genes encoding 12-oxophytodienoic acid-10,11-reductases from Arabidopsis thaliana [J].
Biesgen, C ;
Weiler, EW .
PLANTA, 1999, 208 (02) :155-165
[7]   On the active site of old yellow enzyme - Role of histidine 191 and asparagine 194 [J].
Brown, BJ ;
Deng, Z ;
Karplus, PA ;
Massey, V .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (49) :32753-32762
[8]   Oligosaccharins, brassinolides, and jasmonates: Nontraditional regulators of plant growth, development, and gene expression [J].
Creelman, RA ;
Mullet, JE .
PLANT CELL, 1997, 9 (07) :1211-1223
[9]   JASMONIC ACID METHYL JASMONATE ACCUMULATE IN WOUNDED SOYBEAN HYPOCOTYLS AND MODULATE WOUND GENE-EXPRESSION [J].
CREELMAN, RA ;
TIERNEY, ML ;
MULLET, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (11) :4938-4941
[10]  
FARMER EE, 1992, PLANT CELL, V4, P129, DOI 10.1105/tpc.4.2.129