A pre-clinical assessment model of rat autogeneic bone marrow stromal cell transplantation into the central nervous system

被引:57
作者
Lee, JB [1 ]
Kuroda, S [1 ]
Shichinohe, H [1 ]
Yano, S [1 ]
Kobayashi, H [1 ]
Hida, K [1 ]
Iwasaki, Y [1 ]
机构
[1] Hokkaido Univ, Grad Sch Med, Dept Neurosurg, Kita Ku, Sapporo, Hokkaido 0608638, Japan
来源
BRAIN RESEARCH PROTOCOLS | 2004年 / 14卷 / 01期
关键词
bone marrow stromal cell; transplantation; autograft; migration; differentiation; bis-benzimide; microenvironment;
D O I
10.1016/j.brainresprot.2004.09.004
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In order to verify the biological aspects of 'autogeneic' bone marrow stromal cells (BMSC) transplantation for neurological disorders, we aimed our study towards the assessment of the survival, distribution, and differentiation of autologous BMSC in the central nervous system (CNS). We harvested rat BMSC from femur bones, and the nuclei were then fluorescently labeled by a 24-h co-culture with bis-benzimide. These BMSC were stereotactically injected into the striatum (n=6) or thoracic cord (n=8) of each animal. We evaluated the distribution and differentiation of 'autogeneic' BMSC in the brain and spinal cord after 4 weeks, using the immunohistochemistry technique. We found some injected cells in the ipsilateral striatum, hippocampus, neocortex, and bilateral corpus callosum, and approximately 20% and 15% of the engrafted cells expressed neuronal and astrocytic markers, respectively. Other injected cells were distributed in the dorsal funiculus and adjacent gray matter, and about 10% and 15% of these cells expressed neuronal and astrocytic markers, respectively. Although the precise mechanism of BMSC transdifferentiation still remains unclear, the present results show that 'autogeneic' BMSC could highly differentiate into their own CNS neural cells, suggesting that they are surrounded by favorable conditions. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 44
页数:8
相关论文
共 31 条
[1]   Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J].
Alvarez-Dolado, M ;
Pardal, R ;
Garcia-Vardugo, JM ;
Fike, JR ;
Lee, HO ;
Pfeffer, K ;
Lois, C ;
Morrison, SJ ;
Alvarez-Buylla, A .
NATURE, 2003, 425 (6961) :968-973
[2]   Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats - similarities to astrocyte grafts [J].
Azizi, SA ;
Stokes, D ;
Augelli, BJ ;
DiGirolamo, C ;
Prockop, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (07) :3908-3913
[3]   A minimally invasive percutaneous technique of intramedullary nail insertion in an animal model of fracture healing [J].
Bhandari, M ;
Shaughnessy, S .
ARCHIVES OF ORTHOPAEDIC AND TRAUMA SURGERY, 2001, 121 (10) :591-593
[4]   From marrow to brain: Expression of neuronal phenotypes in adult mice [J].
Brazelton, TR ;
Rossi, FMV ;
Keshet, GI ;
Blau, HM .
SCIENCE, 2000, 290 (5497) :1775-1779
[5]   Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats [J].
Chen, JL ;
Li, Y ;
Wang, L ;
Zhang, ZG ;
Lu, DY ;
Lu, M ;
Chopp, M .
STROKE, 2001, 32 (04) :1005-1011
[6]   Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats [J].
Chen, JL ;
Li, Y ;
Wang, L ;
Lu, M ;
Zhang, XH ;
Chopp, M .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 2001, 189 (1-2) :49-57
[7]   Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation [J].
Chopp, M ;
Zhang, XH ;
Li, Y ;
Wang, L ;
Chen, JL ;
Lu, DY ;
Lu, M ;
Rosenblum, M .
NEUROREPORT, 2000, 11 (13) :3001-3005
[8]   Neurogenesis and brain injury: managing a renewable resource for repair [J].
Hallbergson, AF ;
Gnatenco, C ;
Peterson, DA .
JOURNAL OF CLINICAL INVESTIGATION, 2003, 112 (08) :1128-1133
[9]   Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke [J].
Hess, DC ;
Hill, WD ;
Martin-Studdard, A ;
Carroll, J ;
Brailer, J ;
Carothers, J .
STROKE, 2002, 33 (05) :1362-1368
[10]   Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery [J].
Hofstetter, CP ;
Schwarz, EJ ;
Hess, D ;
Widenfalk, J ;
El Manira, A ;
Prockop, DJ ;
Olson, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (04) :2199-2204