Extreme value properties of multivariate t copulas

被引:92
作者
Nikoloulopoulos, Aristidis K. [1 ]
Joe, Harry [1 ]
Li, Haijun [2 ]
机构
[1] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
[2] Washington State Univ, Dept Math, Pullman, WA 99164 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Tail dependence function; Extreme value; t Copula; MAXIMA;
D O I
10.1007/s10687-008-0072-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The extremal dependence behavior of t copulas is examined and their extreme value limiting copulas, called the t-EV copulas, are derived explicitly using tail dependence functions. As two special cases, the Husler-Reiss and the Marshall-Olkin distributions emerge as limits of the t-EV copula as the degrees of freedom go to infinity and zero respectively. The t copula and its extremal variants attain a wide range in the set of bivariate tail dependence parameters.
引用
收藏
页码:129 / 148
页数:20
相关论文
共 16 条
[11]  
Joe H., 1997, MULTIVARIATE MODELS
[12]   Tail dependence comparison of survival Marshall-Olkin copulas [J].
Li, Haijun .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2008, 10 (01) :39-54
[13]   A MULTIVARIATE EXPONENTIAL DISTRIBUTION [J].
MARSHALL, AW ;
OLKIN, I .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1967, 62 (317) :30-&
[14]   A GENERALIZED BIVARIATE EXPONENTIAL DISTRIBUTION [J].
MARSHALL, AW ;
OLKIN, I .
JOURNAL OF APPLIED PROBABILITY, 1967, 4 (02) :291-&
[15]   BIVARIATE EXTREME STATISTICS .1. [J].
SIBUYA, M .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1960, 11 (03) :195-210
[16]  
Wilson E.B., 1912, Advanced Calculus