Experimental evidence for phase synchronization transitions in the human cardiorespiratory system

被引:165
作者
Bartsch, Ronny [1 ]
Kantelhardt, Jan W.
Penzel, Thomas
Havlin, Shlomo
机构
[1] Bar Ilan Univ, Minerva Ctr, Dept Phys, IL-52900 Ramat Gan, Israel
[2] Univ Halle Wittenberg, Inst Phys, Theory Grp, D-06099 Halle, Saale, Germany
[3] Hosp Philipps Univ, Dept Internal Med, Div Pulm Dis, D-35033 Marburg, Germany
关键词
D O I
10.1103/PhysRevLett.98.054102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Transitions in the dynamics of complex systems can be characterized by changes in the synchronization behavior of their components. Taking the human cardiorespiratory system as an example and using an automated procedure for screening the synchrograms of 112 healthy subjects we study the frequency and the distribution of synchronization episodes under different physiological conditions that occur during sleep. We find that phase synchronization between heartbeat and breathing is significantly enhanced during non-rapid-eye-movement (non-REM) sleep (deep sleep and light sleep) and reduced during REM sleep. Our results suggest that the synchronization is mainly due to a weak influence of the breathing oscillator upon the heartbeat oscillator, which is disturbed in the presence of long-term correlated noise, superimposed by the activity of higher brain regions during REM sleep.
引用
收藏
页数:4
相关论文
共 53 条
[41]   Detection of weak directional coupling: Phase-dynamics approach versus state-space approach [J].
Smirnov, DA ;
Andrzejak, RG .
PHYSICAL REVIEW E, 2005, 71 (03)
[42]   Reversible transitions between synchronization states of the cardiorespiratory system [J].
Stefanovska, A ;
Haken, H ;
McClintock, PVE ;
Hozic, M ;
Bajrovic, F ;
Ribaric, S .
PHYSICAL REVIEW LETTERS, 2000, 85 (22) :4831-4834
[43]   COUPLED OSCILLATORS AND BIOLOGICAL SYNCHRONIZATION [J].
STROGATZ, SH ;
STEWART, I .
SCIENTIFIC AMERICAN, 1993, 269 (06) :102-109
[44]  
Strogatz StevenH., 2004, SYNC: How Order Emerges From Chaos In the Universe, Nature, and Daily Life
[45]   Detection of n:m phase locking from noisy data:: Application to magnetoencephalography [J].
Tass, P ;
Rosenblum, MG ;
Weule, J ;
Kurths, J ;
Pikovsky, A ;
Volkmann, J ;
Schnitzler, A ;
Freund, HJ .
PHYSICAL REVIEW LETTERS, 1998, 81 (15) :3291-3294
[46]   Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators [J].
Teramae, J ;
Tanaka, D .
PHYSICAL REVIEW LETTERS, 2004, 93 (20) :204103-1
[47]   Does synchronization reflect a true interaction in the cardiorespiratory system? [J].
Toledo, E ;
Akselrod, S ;
Pinhas, I ;
Aravot, D .
MEDICAL ENGINEERING & PHYSICS, 2002, 24 (01) :45-52
[48]   Universality of synchrony: Critical behavior in a discrete model of stochastic phase-coupled oscillators [J].
Wood, K ;
Van den Broeck, C ;
Kawai, R ;
Lindenberg, K .
PHYSICAL REVIEW LETTERS, 2006, 96 (14)
[49]   Empirical mode decomposition and synchrogram approach to cardiorespiratory synchronization [J].
Wu, Ming-Chya ;
Hu, Chin-Kun .
PHYSICAL REVIEW E, 2006, 73 (05)
[50]   Spurious detection of phase synchronization in coupled nonlinear oscillators [J].
Xu, Limei ;
Chen, Zhi ;
Hu, Kun ;
Stanley, H. Eugene ;
Ivanov, Plamen Ch. .
PHYSICAL REVIEW E, 2006, 73 (06)