Bootstrap confidence intervals for tail indices

被引:11
作者
Caers, J
Beirlant, J
Vynckier, P
机构
[1] Katholieke Univ Leuven, Dept Civil Engn, B-3001 Heverlee, Belgium
[2] Katholieke Univ Leuven, Dept Math, B-3001 Heverlee, Belgium
[3] Belgian Natl Fund Sci Res, Louvain, Belgium
关键词
extreme value theory; Pareto index; extreme value index; bootstrap confidence intervals;
D O I
10.1016/S0167-9473(97)00033-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
One of the classical problems in extreme value statistics concerns the choice of the number of extremes used in estimation. It is known that there is a bias-variance trade-off when changing the threshold above which extremes are retained. A mean squared error approach is therefore often used as the governing criterion for picking an optimal level. Hill-type estimators for tail indices were introduced in Beirlant et al. (J. Amer. Statist. Assoc. (1996a); Bernoulli (1996b)) in an iterative fashion using the complete sample to estimate adaptively the optimal number of extremes to be used in the tail estimation problem. The methodology is based on the minimization of the asymptotic mean squared error. We propose a nonparametric bootstrap solution for the open problem of obtaining workable finite sample confidence intervals of these extreme value estimators. Monte Carlo simulation will be used to analyse the accurateness of coverage probabilities and to study the effect of bias. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:259 / 277
页数:19
相关论文
共 22 条
[1]   NORMAL VARIANCE MEAN MIXTURES AND Z-DISTRIBUTIONS [J].
BARNDORFFNIELSEN, O ;
KENT, J ;
SORENSEN, M .
INTERNATIONAL STATISTICAL REVIEW, 1982, 50 (02) :145-159
[2]   EXPONENTIALLY DECREASING DISTRIBUTIONS FOR LOGARITHM OF PARTICLE-SIZE [J].
BARNDORFFNIELSEN, O .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 353 (1674) :401-419
[3]   Tail index estimation, pareto quantile plots, and regression diagnostics [J].
Beirlant, J ;
Vynckier, P ;
Teugels, JL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (436) :1659-1667
[4]   Valuation of primary diamond deposits by extreme value statistics [J].
Caers, J ;
Rombouts, L .
ECONOMIC GEOLOGY AND THE BULLETIN OF THE SOCIETY OF ECONOMIC GEOLOGISTS, 1996, 91 (05) :841-854
[5]   Extreme value analysis of diamond-size distributions [J].
Caers, J ;
Vynckier, P ;
Beirlant, J ;
Rombouts, L .
MATHEMATICAL GEOLOGY, 1996, 28 (01) :25-43
[6]  
CAERS J, 1995, CAHIERS GEOSTATISTIQ, V5, P110
[7]   KERNEL ESTIMATES OF THE TAIL INDEX OF A DISTRIBUTION [J].
CSORGO, S ;
DEHEUVELS, P ;
MASON, D .
ANNALS OF STATISTICS, 1985, 13 (03) :1050-1077
[8]   A MOMENT ESTIMATOR FOR THE INDEX OF AN EXTREME-VALUE DISTRIBUTION [J].
DEKKERS, ALM ;
EINMAHL, JHJ ;
DEHAAN, L .
ANNALS OF STATISTICS, 1989, 17 (04) :1833-1855
[9]  
EFRON B, 1987, J AM STAT ASSOC, V82, P171, DOI 10.2307/2289144
[10]  
Efron B., 1994, INTRO BOOTSTRAP, V57, DOI DOI 10.1201/9780429246593