Synaptic actions of neuropeptide FF in the rat parabrachial nucleus: Interactions with opioid receptors

被引:20
作者
Chen, XH
Zidichouski, JA
Harris, KH
Jhamandas, JH [1 ]
机构
[1] Mem Univ Newfoundland, Div Basic Med Sci, St John, NF A1B 3V6, Canada
[2] Univ Alberta, Dept Med Neurol, Edmonton, AB T6G 2B7, Canada
[3] Univ Alberta, Div Neurosci, Edmonton, AB T6G 2B7, Canada
关键词
D O I
10.1152/jn.2000.84.2.744
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The pontine parabrachial nucleus (PBN) receives both opioid and Neuropeptide FF (NPFF) projections from the lower brain stem and/or the spinal cord. Because of this anatomical convergence and previous evidence that NPFF displays both pro- and antiopioid activities, this study examined the synaptic effects of NPFF in the PBN and the mechanisms underlying these effects using an in vitro brain slice preparation and the nystatin-perforated patch-clamp recording technique. Under voltage-clamp conditions, NPFF reversibly reduced the evoked excitatory postsynaptic currents (EPSCs) in a dose-dependent fashion. This effect was not accompanied by apparent changes in the holding current, the current-voltage relationship or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced inward currents in the PBN cells. When a paired-pulse protocol was used, NPFF increased the ratio of these synaptic currents. Analysis of miniature EPSCs showed that NPFF caused a rightward shift in the frequency-distribution curve, whereas the amplitude-distribution curve remained unchanged. Collectively, these experiments indicate that NPFF reduces the evoked EPSCs through a presynaptic mechanism of action. The synaptic effects induced by NPFF (5 mu M) could not be blocked by the specific mu-opioid receptor antagonist, D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (1 mu M), but application of delta-opioid receptor antagonist Tyr-Tic-Phe-Phe (5 mu M) almost completely prevented effects of NPFF. Moreover, the delta-opioid receptor agonist, Deltorphin (1 mu M), mimicked the effects as NPFF and also occluded NPFF's actions on synaptic currents. These results indicate that NPFF modulates excitatory synaptic transmission in the PBN through an interaction with presynaptic delta-opioid receptors. These observations provide a cellular basis for NPFF enhancement of the antinociceptive effects consequent to central activation of delta-opioid receptors.
引用
收藏
页码:744 / 751
页数:8
相关论文
共 39 条
[1]  
Acosta CG, 1999, J NEUROSCI, V19, P8337
[2]   AUTORADIOGRAPHIC DISTRIBUTION OF RECEPTORS TO FLFQPQRFAMIDE, A MORPHINE-MODULATING PEPTIDE, IN RAT CENTRAL-NERVOUS-SYSTEM [J].
ALLARD, M ;
ZAJAC, JM ;
SIMONNET, G .
NEUROSCIENCE, 1992, 49 (01) :101-116
[3]   CHARACTERIZATION OF RAT SPINAL-CORD RECEPTORS TO FLFQPQRFAMIDE, A MAMMALIAN MORPHINE MODULATING PEPTIDE - A BINDING STUDY [J].
ALLARD, M ;
GEOFFRE, S ;
LEGENDRE, P ;
VINCENT, JD ;
SIMONNET, G .
BRAIN RESEARCH, 1989, 500 (1-2) :169-176
[4]   The neuropeptide FF analogue, 1DME, enhances in vivo met-enkephalin release from the rat spinal cord [J].
Ballet, S ;
Mauborgne, A ;
Gouardères, C ;
Bourgoin, AS ;
Zajac, JM ;
Hamon, M ;
Cesselin, F .
NEUROPHARMACOLOGY, 1999, 38 (09) :1317-1324
[5]   Dopamine depresses glutamatergic synaptic transmission in the rat parabrachial nucleus in vitro [J].
Chen, X ;
Kombian, SB ;
Zidichouski, JA ;
Pittman, QJ .
NEUROSCIENCE, 1999, 90 (02) :457-468
[6]   AGONISTS AT MU-OPIOID, M-2-MUSCARINIC AND GABAB-RECEPTORS INCREASE THE SAME POTASSIUM CONDUCTANCE IN RAT LATERAL PARABRACHIAL NEURONS [J].
CHRISTIE, MJ ;
NORTH, RA .
BRITISH JOURNAL OF PHARMACOLOGY, 1988, 95 (03) :896-902
[7]   Differential modulation of mu- and delta-opioid antinociception by neuropeptide FF receptors in young mice [J].
Desprat, C ;
Zajac, JM .
NEUROPEPTIDES, 1997, 31 (01) :1-7
[8]  
GOLDSTEIN A, 1989, MOL PHARMACOL, V36, P265
[9]   Autoradiographic characterization of rat spinal neuropeptide FF receptors by using [I-125][D.Tyr(1), (NMe)Phe(3)]NPFF [J].
Gouarderes, C ;
Tafani, JAM ;
Mazarguil, H ;
Zajac, JM .
BRAIN RESEARCH BULLETIN, 1997, 42 (03) :231-238
[10]   Role of opioid receptors in the spinal antinociceptive effects of neuropeptide FF analogues [J].
Gouarderes, C ;
Jhamandas, K ;
Sutak, M ;
Zajac, JM .
BRITISH JOURNAL OF PHARMACOLOGY, 1996, 117 (03) :493-501