Artificial intelligences in urological practice: the key to success?

被引:8
作者
Cai, T. [1 ]
Conti, G.
Lorenzini, M.
Bartoletti, R.
机构
[1] Univ Florence, Dept Urol, Florence, Italy
[2] Univ Florence, Dept Informat Engn, Florence, Italy
[3] Univ Florence, Dept Phys, Florence, Italy
关键词
D O I
10.1093/annonc/mdl411
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页码:604 / U10
页数:2
相关论文
共 6 条
[1]   Neuro-fuzzy modeling: An accurate and interpretable method for predicting bladder cancer progression [J].
Catto, JWF ;
Abbod, MF ;
Linkens, DA ;
Hamdy, FC .
JOURNAL OF UROLOGY, 2006, 175 (02) :474-479
[2]   Less is more: artificial intelligence and gene-expression arrays [J].
Hamdy, FC ;
Catto, JWF .
LANCET, 2004, 364 (9450) :2003-2004
[3]   Multivariate analysis of the prognostic factors of primary superficial bladder cancer [J].
Millán-Rodríguez, F ;
Chéchile-Toniolo, G ;
Salvador-Bayarri, J ;
Palou, J ;
Vicente-Rodríguez, J .
JOURNAL OF UROLOGY, 2000, 163 (01) :73-78
[4]   Guidelines on bladder cancer [J].
Oosterlinck, W ;
Lobel, B ;
Jakse, G ;
Malmström, PU ;
Stöckle, M ;
Sternberg, C .
EUROPEAN UROLOGY, 2002, 41 (02) :105-112
[5]  
Sargent DJ, 2001, CANCER-AM CANCER SOC, V91, P1636, DOI 10.1002/1097-0142(20010415)91:8+<1636::AID-CNCR1176>3.0.CO
[6]  
2-D