Nitrite-driven anaerobic methane oxidation by oxygenic bacteria

被引:1393
作者
Ettwig, Katharina F. [1 ]
Butler, Margaret K. [1 ]
Le Paslier, Denis [2 ,3 ,4 ]
Pelletier, Eric [2 ,3 ,4 ]
Mangenot, Sophie [2 ]
Kuypers, Marcel M. M. [5 ]
Schreiber, Frank [5 ]
Dutilh, Bas E. [6 ]
Zedelius, Johannes [5 ]
de Beer, Dirk [5 ]
Gloerich, Jolein [7 ]
Wessels, Hans J. C. T. [7 ]
van Alen, Theo [1 ]
Luesken, Francisca [1 ]
Wu, Ming L. [1 ]
van de Pas-Schoonen, Katinka T. [1 ]
den Camp, Huub J. M. Op [1 ]
Janssen-Megens, Eva M. [8 ]
Francoijs, Kees-Jan [8 ]
Stunnenberg, Henk [8 ]
Weissenbach, Jean [2 ,3 ,4 ]
Jetten, Mike S. M. [1 ]
Strous, Marc [1 ,5 ,9 ]
机构
[1] Radboud Univ Nijmegen, IWWR, Dept Microbiol, NL-6525 AJ Nijmegen, Netherlands
[2] CEA Genoscope, F-91057 Evry, France
[3] CNRS, UMR 8030, F-91057 Evry, France
[4] Univ Evry Val Essonne, F-91057 Evry, France
[5] Max Planck Inst Marine Microbiol, D-28359 Bremen, Germany
[6] Radboud Univ Nijmegen, Med Ctr, Ctr Mol & Biomol Informat, Nijmegen Ctr Mol Life Sci, NL-6525 GA Nijmegen, Netherlands
[7] Radboud Univ Nijmegen, Med Ctr, Nijmegen Prote Facil, Dept Lab Med,Lab Genet Endocrine & Metab Dis, NL-6525 GA Nijmegen, Netherlands
[8] Radboud Univ Nijmegen, Dept Mol Biol, Nijmegen Ctr Mol Life Sci, NL-6525 GA Nijmegen, Netherlands
[9] Univ Bielefeld, Ctr Biotechnol, D-33501 Bielefeld, Germany
基金
欧洲研究理事会;
关键词
CHLORITE DISMUTASE; NITROUS-OXIDE; GENOME; MICROSENSOR; TRANSFORMATION; MONOOXYGENASE; ENRICHMENT; ATMOSPHERE; SOILS; N2O;
D O I
10.1038/nature08883
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Only three biological pathways are known to produce oxygen: photosynthesis, chlorate respiration and the detoxification of reactive oxygen species. Here we present evidence for a fourth pathway, possibly of considerable geochemical and evolutionary importance. The pathway was discovered after metagenomic sequencing of an enrichment culture that couples anaerobic oxidation of methane with the reduction of nitrite to dinitrogen. The complete genome of the dominant bacterium, named 'Candidatus Methylomirabilis oxyfera', was assembled. This apparently anaerobic, denitrifying bacterium encoded, transcribed and expressed the well-established aerobic pathway for methane oxidation, whereas it lacked known genes for dinitrogen production. Subsequent isotopic labelling indicated that 'M. oxyfera' bypassed the denitrification intermediate nitrous oxide by the conversion of two nitric oxidemolecules to dinitrogen and oxygen, which was used to oxidize methane. These results extend our understanding of hydrocarbon degradation under anoxic conditions and explain the biochemical mechanism of a poorly understood freshwater methane sink. Because nitrogen oxides were already present on early Earth, our finding opens up the possibility that oxygen was available to microbial metabolism before the evolution of oxygenic photosynthesis.
引用
收藏
页码:543 / +
页数:7
相关论文
共 51 条
  • [1] EXPERIMENTS ON BACTERIAL DENITRIFICATION
    ALLEN, MB
    VANNIEL, CB
    [J]. JOURNAL OF BACTERIOLOGY, 1952, 64 (03) : 397 - 412
  • [2] An oxygen insensitive microsensor for nitrous oxide
    Andersen, K
    Kjær, T
    Revsbech, NP
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2001, 81 (01) : 42 - 48
  • [3] Haloferax volcanii PitA:: an example of functional interaction between the Pfam chlorite dismutase and antibiotic biosynthesis monooxygenase families?
    Bab-Dinitz, E
    Shmuely, H
    Maupin-Furlow, J
    Eichler, J
    Shaanan, B
    [J]. BIOINFORMATICS, 2006, 22 (06) : 671 - 675
  • [4] Nitrogen as a regulatory factor of methane oxidation in soils and sediments
    Bodelier, PLE
    Laanbroek, HJ
    [J]. FEMS MICROBIOLOGY ECOLOGY, 2004, 47 (03) : 265 - 277
  • [5] HISTORY OF INORGANIC NITROGEN IN BIOSPHERE
    BRODA, E
    [J]. JOURNAL OF MOLECULAR EVOLUTION, 1975, 7 (01) : 87 - 100
  • [6] Castresana J, 2004, ADV PHOTO RESPIRAT, V15, P1
  • [7] CHAPMAN DJ, 1983, BIOL BIOCH EFFECTS D
  • [8] Chistoserdova L, 2005, ASM NEWS, V71, P521
  • [9] Inactivation and nitration of human superoxide dismutase (SOD) by fluxes of nitric oxide and superoxide
    Demicheli, Veronica
    Quijano, Celia
    Alvarez, Beatriz
    Radi, Rafael
    [J]. FREE RADICAL BIOLOGY AND MEDICINE, 2007, 42 (09) : 1359 - 1368
  • [10] Was nitric oxide the first deep electron sink?
    Ducluzeau, Anne-Lise
    van Lis, Robert
    Duval, Simon
    Schoepp-Cothenet, Barbara
    Russell, Michael J.
    Nitschke, Wolfgang
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2009, 34 (01) : 9 - 15