Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction

被引:185
作者
Morris, Robert M. [1 ]
Nunn, Brook L. [2 ]
Frazar, Christian [1 ]
Goodlett, David R. [2 ]
Ting, Ying S. [1 ,2 ]
Rocap, Gabrielle [1 ]
机构
[1] Univ Washington, Sch Oceanog, Ctr Environm Genom, Seattle, WA 98195 USA
[2] Univ Washington, Dept Med Chem, Seattle, WA 98195 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
proteomics; bacteria; Archaea; virus; proteorhodopsin; TonB; OUTER-MEMBRANE; COMMUNITY PROTEOMICS; DEPENDENT TRANSPORT; MARINE BACTERIUM; PROTEORHODOPSIN; BACTERIOPLANKTON; GENES; FRACTIONATION; CULTIVATION; EXPRESSION;
D O I
10.1038/ismej.2010.4
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Bacteria and Archaea play critical roles in marine energy fluxes and nutrient cycles by incorporating and redistributing dissolved organic matter and inorganic nutrients in the oceans. How these microorganisms do this work at the level of the expressed protein is known only from a few studies of targeted lineages. We used comparative membrane metaproteomics to identify functional responses of communities to different nutrient concentrations on an oceanic scale. Comparative analyses of microbial membrane fractions revealed shifts in nutrient utilization and energy transduction along an environmental gradient in South Atlantic surface waters, from a low-nutrient gyre to a highly productive coastal upwelling region. The dominant membrane proteins identified (19%) were TonB-dependent transporters (TBDTs), which are known to utilize a proton motive force to transport nutrients across the outer membrane of Gram-negative bacteria. The ocean-wide importance of TonB-dependent nutrient acquisition in marine bacteria was unsuspected. Diverse light-harvesting rhodopsins were detected in membrane proteomes from every sample. Proteomic evidence of both TBDTs and rhodopsins in the same lineages suggest that phototrophic bacterioplankton have the potential to use energy from light to fuel transport activities. We also identified viral proteins in every sample and archaeal ammonia monooxygenase proteins in the upwelling region, suggesting that Archaea are important nitrifiers in nutrient-rich surface waters. The ISME Journal (2010) 4, 673-685; doi:10.1038/ismej.2010.4; published online 18 February 2010
引用
收藏
页码:673 / 685
页数:13
相关论文
共 52 条
[51]   Archaeal nitrification in the ocean [J].
Wuchter, Cornelia ;
Abbas, Ben ;
Coolen, Marco J. L. ;
Herfort, Lydie ;
van Bleijswijk, Judith ;
Timmers, Peer ;
Strous, Marc ;
Teira, Eva ;
Herndl, Gerhard J. ;
Middelburg, Jack J. ;
Schouten, Stefan ;
Damste, Jaap S. Sinninghe .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (33) :12317-12322
[52]   The Sorcerer II Global Ocean Sampling expedition:: Expanding the universe of protein families [J].
Yooseph, Shibu ;
Sutton, Granger ;
Rusch, Douglas B. ;
Halpern, Aaron L. ;
Williamson, Shannon J. ;
Remington, Karin ;
Eisen, Jonathan A. ;
Heidelberg, Karla B. ;
Manning, Gerard ;
Li, Weizhong ;
Jaroszewski, Lukasz ;
Cieplak, Piotr ;
Miller, Christopher S. ;
Li, Huiying ;
Mashiyama, Susan T. ;
Joachimiak, Marcin P. ;
van Belle, Christopher ;
Chandonia, John-Marc ;
Soergel, David A. ;
Zhai, Yufeng ;
Natarajan, Kannan ;
Lee, Shaun ;
Raphael, Benjamin J. ;
Bafna, Vineet ;
Friedman, Robert ;
Brenner, Steven E. ;
Godzik, Adam ;
Eisenberg, David ;
Dixon, Jack E. ;
Taylor, Susan S. ;
Strausberg, Robert L. ;
Frazier, Marvin ;
Venter, J. Craig .
PLOS BIOLOGY, 2007, 5 (03) :432-466