Improving the selectivity of cancer treatments by interfering with cell response pathways

被引:25
作者
Damia, G [1 ]
Broggini, M [1 ]
机构
[1] Ist Ric Farmacol Mario Negri, Mol Pharmacol Lab, I-20157 Milan, Italy
关键词
checkpoints; cancer; cellular response; treatment response; anticancer agents;
D O I
10.1016/j.ejca.2004.07.020
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The cellular response to the stress induced by treatment with anticancer agents is a key determinant of drug activity. A pivotal role in this response is played by checkpoint proteins that control the normal passage of cells through the cell cycle. There is evidence that cancer cells often have defects in one checkpoint control that makes them more vulnerable to inhibition of a second checkpoint, thereby enhancing the overall response to treatment. The G1 and G2 checkpoints are particularly crucial for the decision of a cell to arrest in the cell cycle after damage. The checkpoints are used to try to allow the repair of any damage, or to activate the apoptotic (programmed cell death) machinery. Inhibition of both G1 and G2 checkpoints in cancer cells is therefore likely to result in an induction of the death response in cancer cells. Similarly, an increasing knowledge of the molecular mechanisms that form the basis of apoptotic pathways has helped to define why cancer cells have a reduced propensity to undergo apoptosis following the activation of apoptotic inhibitory pathways or the inhibition of pro-apoptotic pathways. Therefore, the possibility to modulate these pathways is likely to result not only in the increased activity of anticancer agents, but also in an increase in their specificity. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2550 / 2559
页数:10
相关论文
共 111 条
[1]   Questioning the role of checkpoint kinase 2 in the p53 DNA damage response [J].
Ahn, JW ;
Urist, M ;
Prives, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (23) :20480-20489
[2]   A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma [J].
Ambrosini, G ;
Adida, C ;
Altieri, DC .
NATURE MEDICINE, 1997, 3 (08) :917-921
[3]   The spindle checkpoint [J].
Amon, A .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1999, 9 (01) :69-75
[4]   Enhanced phosphorylation of p53 by ATN in response to DNA damage [J].
Banin, S ;
Moyal, L ;
Shieh, SY ;
Taya, Y ;
Anderson, CW ;
Chessa, L ;
Smorodinsky, NI ;
Prives, C ;
Reiss, Y ;
Shiloh, Y ;
Ziv, Y .
SCIENCE, 1998, 281 (5383) :1674-1677
[5]   Mammalian G1- and S-phase checkpoints in response to DNA damage [J].
Bartek, J ;
Lukas, J .
CURRENT OPINION IN CELL BIOLOGY, 2001, 13 (06) :738-747
[6]   Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome [J].
Bell, DW ;
Varley, JM ;
Szydlo, TE ;
Kang, DH ;
Wahrer, DCR ;
Shannon, KE ;
Lubratovich, M ;
Verselis, SJ ;
Isselbacher, KJ ;
Fraumeni, JF ;
Birch, JM ;
Li, FP ;
Garber, JE ;
Haber, DA .
SCIENCE, 1999, 286 (5449) :2528-2531
[7]  
Bertoni F, 1999, GENE CHROMOSOME CANC, V26, P176, DOI 10.1002/(SICI)1098-2264(199910)26:2<176::AID-GCC11>3.0.CO
[8]  
2-3
[9]   p38 and Chk1 kinases:: different conductors for the G2/M checkpoint symphony [J].
Bulavin, DV ;
Amundson, SA ;
Fornace, AJ .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2002, 12 (01) :92-97
[10]   Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase [J].
Bulavin, DV ;
Higashimoto, Y ;
Popoff, IJ ;
Gaarde, WA ;
Basrur, V ;
Potapova, O ;
Appella, E ;
Fornace, AJ .
NATURE, 2001, 411 (6833) :102-107