Anandamide activity and degradation are regulated by early postnatal aging and follicle-stimulating hormone in mouse sertoli cells

被引:86
作者
Maccarrone, M
Cecconi, S
Rossi, G
Battista, N
Pauselli, R
Finazzi-Agrò, A
机构
[1] Univ Roma Tor Vergata, Dept Expt Med & Biochem Sci, I-00133 Rome, Italy
[2] Univ Aquila, Dept Biomed Sci & Technol, I-67100 Laquila, Italy
关键词
D O I
10.1210/en.2002-220544
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Anandamide (AEA), a prominent member of the endogenous ligands of cannabinoid receptors (endocannabinoids), is known to adversely affect female fertility. However, a potential role of AEA in male reproductive functions is unknown. Here we report evidence that immature mouse Sertoli cells have the biochemical tools to bind and inactivate AEA, i.e. a functional type-2 cannabinoid receptor (CB2R), a selective AEA membrane transporter, and an AEA-degrading enzyme fatty acid amide hydrolase. We show that, unlike CB2R, the activity of AEA membrane transporter and the activity and expression of FAAH decrease, whereas the apoptosis-inducing activity of AEA increases with age during the neonatal period. We also show that FSH reduces the apoptotic potential of AEA, but not that of its nonhydrolyzable analog methanandamide. Concomitantly, FSH enhances FAAH activity in a manner dependent on mRNA transcription and protein synthesis and apparently involving cAMP. These data demonstrate that Sertoli cells partake in the peripheral endocannabinoid system, and that FSH reduces the apoptotic potential of AEA by activating FAAH. Taken together, it can be suggested that the endocannabinoid network plays a role in the hormonal regulation of male fertility.
引用
收藏
页码:20 / 28
页数:9
相关论文
共 55 条
[1]   (R)-METHANANDAMIDE - A CHIRAL NOVEL ANANDAMIDE POSSESSING HIGHER POTENCY AND METABOLIC STABILITY [J].
ABADJI, V ;
LIN, SY ;
TAHA, G ;
GRIFFIN, G ;
STEVENSON, LA ;
PERTWEE, RG ;
MAKRIYANNIS, A .
JOURNAL OF MEDICINAL CHEMISTRY, 1994, 37 (12) :1889-1893
[2]   Cannabinoid receptors and the regulation of immune response [J].
Berdyshev, EV .
CHEMISTRY AND PHYSICS OF LIPIDS, 2000, 108 (1-2) :169-190
[3]   Evidence for a new G protein-coupled cannabinoid receptor in mouse brain [J].
Breivogel, CS ;
Griffin, G ;
Di Marzo, V ;
Martin, BR .
MOLECULAR PHARMACOLOGY, 2001, 60 (01) :155-163
[4]   EVIDENCE FOR A CANNABINOID RECEPTOR IN SEA-URCHIN SPERM AND ITS ROLE IN BLOCKADE OF THE ACROSOME REACTION [J].
CHANG, MC ;
BERKERY, D ;
SCHUEL, R ;
LAYCHOCK, SG ;
ZIMMERMAN, AM ;
ZIMMERMAN, S ;
SCHUEL, H .
MOLECULAR REPRODUCTION AND DEVELOPMENT, 1993, 36 (04) :507-516
[5]   Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides [J].
Cravatt, BF ;
Giang, DK ;
Mayfield, SP ;
Boger, DL ;
Lerner, RA ;
Gilula, NB .
NATURE, 1996, 384 (6604) :83-87
[6]   Endocannabinoids and fatty acid amides in cancer, inflammation and related disorders [J].
De Petrocellis, L ;
Melck, D ;
Bisogno, T ;
Di Marzo, V .
CHEMISTRY AND PHYSICS OF LIPIDS, 2000, 108 (1-2) :191-209
[7]   The activity of anandamide at vanilloid VR1 receptors requires facilitated transport across the cell membrane and is limited by intracellular metabolism [J].
De Petrocellis, L ;
Bisogno, T ;
Maccarrone, M ;
Davis, JB ;
Finazzi-Agrò, A ;
Di Marzo, V .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (16) :12856-12863
[8]   Production and physiological actions of anandamide in the vasculature of the rat kidney [J].
Deutsch, DG ;
Goligorsky, MS ;
Schmid, PC ;
Krebsbach, RJ ;
Schmid, HHO ;
Das, SK ;
Dey, SK ;
Arreaza, G ;
Thorup, C ;
Stefano, G ;
Moore, LC .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (06) :1538-1546
[9]  
FACCI L, 1995, P NATL ACAD SCI USA, V92, P3346
[10]   Fatty acid amide hydrolase: biochemistry, pharmacology, and therapeutic possibilities for an enzyme hydrolyzing anandamide, 2-arachidonoylglycerol, palmitoylethanolamide, and oleamide [J].
Fowler, CJ ;
Jonsson, KO ;
Tiger, G .
BIOCHEMICAL PHARMACOLOGY, 2001, 62 (05) :517-526