Unsupervised Medical Image Segmentation Based on the Local Center of Mass

被引:56
作者
Aganj, Iman [1 ,2 ]
Harisinghani, Mukesh G. [1 ,3 ]
Weissleder, Ralph [1 ,3 ]
Fischl, Bruce [1 ,2 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02115 USA
[2] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Harvard Med Sch, Massachusetts Gen Hosp, Ctr Syst Biol, Boston, MA USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
美国国家卫生研究院;
关键词
D O I
10.1038/s41598-018-31333-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Image segmentation is a critical step in numerous medical imaging studies, which can be facilitated by automatic computational techniques. Supervised methods, although highly effective, require large training datasets of manually labeled images that are labor-intensive to produce. Unsupervised methods, on the contrary, can be used in the absence of training data to segment new images. We introduce a new approach to unsupervised image segmentation that is based on the computation of the local center of mass. We propose an efficient method to group the pixels of a one-dimensional signal, which we then use in an iterative algorithm for two-and three-dimensional image segmentation. We validate our method on a 2D X-ray image, a 3D abdominal magnetic resonance (MR) image and a dataset of 3D cardiovascular MR images.
引用
收藏
页数:8
相关论文
共 13 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
[Anonymous], 2017, ANATOMY PHYSL
[3]  
Beucher S., 1993, MATH MORPHOLOGY IMAG, V34, P433, DOI DOI 10.1201/9781482277234-12
[4]   A review of atlas-based segmentation for magnetic resonance brain images [J].
Cabezas, Mariano ;
Oliver, Arnau ;
Llado, Xavier ;
Freixenet, Jordi ;
Cuadra, Meritxell Bach .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) :E158-E177
[5]   Unsupervised Learning and Pattern Recognition of Biological Data Structures with Density Functional Theory and Machine Learning [J].
Chen, Chien-Chang ;
Juan, Hung-Hui ;
Tsai, Meng-Yuan ;
Lu, Henry Horng-Shing .
SCIENTIFIC REPORTS, 2018, 8
[6]   Uncertainties in life-cycle analysis and design of structures and infrastructures [J].
Elnashai, Amr S. ;
Tsompanakis, Yiannis .
STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2012, 8 (10) :891-892
[7]   Noninvasive mapping of pancreatic inflammation in recent-onset type-1 diabetes patients [J].
Gaglia, Jason L. ;
Harisinghani, Mukesh ;
Aganj, Iman ;
Wojtkiewicz, Gregory R. ;
Hedgire, Sandeep ;
Benoist, Christophe ;
Mathis, Diane ;
Weissleder, Ralph .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (07) :2139-2144
[8]   Hybrid image segmentation using watersheds and fast region merging [J].
Haris, K ;
Efstratiadis, SN ;
Maglaveras, N ;
Katsaggelos, AK .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (12) :1684-1699
[9]   A survey on deep learning in medical image analysis [J].
Litjens, Geert ;
Kooi, Thijs ;
Bejnordi, Babak Ehteshami ;
Setio, Arnaud Arindra Adiyoso ;
Ciompi, Francesco ;
Ghafoorian, Mohsen ;
van der Laak, Jeroen A. W. M. ;
van Ginneken, Bram ;
Sanchez, Clara I. .
MEDICAL IMAGE ANALYSIS, 2017, 42 :60-88
[10]   Interactive Whole-Heart Segmentation in Congenital Heart Disease [J].
Pace, Danielle F. ;
Dalca, Adrian V. ;
Geva, Tal ;
Powell, Andrew J. ;
Moghari, Mehdi H. ;
Golland, Polina .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :80-88