Identification of iron transition group trace impurities in GaN bulk crystals by electron paramagnetic resonance

被引:11
作者
Baranov, PG [1 ]
Ilyin, IV [1 ]
Mokhov, EN [1 ]
机构
[1] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
来源
DEFECTS IN SEMICONDUCTORS - ICDS-19, PTS 1-3 | 1997年 / 258-2卷
关键词
gallium nitride; manganese; nickel; electron paramagnetic resonance;
D O I
10.4028/www.scientific.net/MSF.258-263.1167
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on the observation of electron paramagnetic resonance of iron, manganese and nickel trace impurities in bulk GaN crystals grown by the sublimation sandwich method. The resolved hyperfine structure due to interaction with Mn-55 (I=5/2) nuclei has been observed in GaN, allowing unambiguous identification of the impurity. Manganese and nickel exist in Mn2+ (3d(5)) and Ni3+ (3d(7)) charge states with electron spin S=5/2 and S=3/2, respectively, and occupy gallium sites in the GaN lattice. For Mn2+ we found g=1.999, hyperfine structure constant A=70.10(-4) cm(-1) and fine structure parameter /D/ = 240.10(-4) cm(-1). The EPR spectrum of Ni3+ in GaN had the characteristic anisotropy of an S = 3/2 system in a strong axial crystalline field. The effective g-factor values were found to be g(parallel to)' = 2.10 and g(perpendicular to)' congruent to 4.20 for a system with an effective spin S' = 1/2. An analogy was revealed between the parameters of Mn2+ and Ni3+ in GaN and ZnO crystals. The zero-phonon line at 1.047 eV seems to belong to transition T-4(2)(F)-(4)A(2)(F) within 3d levels of Ni3+ ion with a 3d(7) electronic configuration. In addition, EPR spectra of two new axial centres, labelled as ill and ii2 centres, have been observed.
引用
收藏
页码:1167 / 1172
页数:6
相关论文
共 13 条
[1]  
ABRAGAM A, 1970, ELECT PARAMAGNETIC R, V1, pCH7
[2]   Identification of iron transition group trace impurities in GaN bulk crystals by electron paramagnetic resonance [J].
Baranov, PG ;
Ilyin, IV ;
Mokhov, EN .
SOLID STATE COMMUNICATIONS, 1997, 101 (08) :611-615
[3]   DETERMINATION OF THE GAN/ALN BAND-OFFSET VIA THE (-/0)-ACCEPTOR LEVEL OF IRON [J].
BAUR, J ;
MAIER, K ;
KUNZER, M ;
KAUFMANN, U ;
SCHNEIDER, J .
APPLIED PHYSICS LETTERS, 1994, 65 (17) :2211-2213
[4]   CUBIC FIELD PARAMETER OF 6S5/2 IONS IN ZINC OXIDE CRYSTALS [J].
HAUSMANN, A .
SOLID STATE COMMUNICATIONS, 1968, 6 (07) :457-&
[5]   ELECTRON PARAMAGNETIC RESONANCE OF PHOTOSENSITIVE IRON TRANSITION GROUP IMPURITIES IN ZNS + ZNO [J].
HOLTON, WC ;
ESTLE, TL ;
SCHNEIDER, J .
PHYSICAL REVIEW, 1964, 133 (6A) :1638-+
[6]  
LUDWIG GW, 1962, SOLID STATE PHYS, V13, P223
[7]  
MAIER K, 1994, MATER SCI FORUM, V143-, P93, DOI 10.4028/www.scientific.net/MSF.143-147.93
[8]   LARGE-BAND-GAP SIC, III-V NITRIDE, AND II-VI ZNSE-BASED SEMICONDUCTOR-DEVICE TECHNOLOGIES [J].
MORKOC, H ;
STRITE, S ;
GAO, GB ;
LIN, ME ;
SVERDLOV, B ;
BURNS, M .
JOURNAL OF APPLIED PHYSICS, 1994, 76 (03) :1363-1398
[9]   Photoluminescence study of the 1.047 eV emission in GaN [J].
Pressel, K ;
Nilsson, S ;
Heitz, R ;
Hoffman, A ;
Meyer, BK .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (06) :3214-3218
[10]   EFFECT OF CRYSTALLOGRAPHIC ORIENTATION ON THE POLYTYPE STABILIZATION AND TRANSFORMATION OF SILICON-CARBIDE [J].
VODAKOV, YA ;
MOKHOV, EN ;
ROENKOV, AD ;
SAIDBEKOV, DT .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1979, 51 (01) :209-215