Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light

被引:246
作者
Lee, Yungi
Terashima, Hiroaki
Shimodaira, Yoshiki
Teramura, Kentaro
Hara, Michikazu
Kobayashi, Hisayoshi
Domen, Kazunari
Yashima, Masatomo
机构
[1] Univ Tokyo, Dept Chem Syst Engn, Bunkyo Ku, Tokyo 1138656, Japan
[2] Tokyo Inst Technol, Chem Resources Lab, Midori Ku, Yokohama, Kanagawa 2268503, Japan
[3] Tokyo Univ Sci, Fac Sci, Dept Appl Chem, Shinjyuku Ku, Tokyo 1628601, Japan
[4] Kyoto Inst Technol, Dept Chem & Mat Technol, Fac Engn & Design, Kyoto 6068585, Japan
[5] Tokyo Inst Technol, Dept Mat Sci & Engn, Interdisciplinary Grad Sch Sci & Engn, Midori Ku, Yokohama, Kanagawa 2268503, Japan
[6] Japan Sci & Technol Agcy, SORST, Taito Ku, Tokyo 1100015, Japan
关键词
D O I
10.1021/jp0656532
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A solid solution of zinc oxide and germanium nitride (Zn(1+x)Ge)(N(2)O(x)) (x = 0.44) is demonstrated to be an effective photocatalyst for overall water splitting under ultraviolet and visible light. The catalyst is prepared by reaction of GeO(2) and ZnO under ammonia flow (20 mL(.)min(-1)) at 1123 K for 15 h. The crystal structure of the material is investigated by a combination of Rietveld analysis and the maximum-entropy method using neutron powder diffraction data. The (Zn(1.44)Ge)(N(2.08)O(0.38)) catalyst is confirmed to have a wurtzite-type structure (space group P6(3)mc) and to be the solid solution where the oxygen atoms are substituted for nitrogen atoms. The (Zn(1.44)Ge)(N(2.08)O(0.38)) catalysts thus prepared exhibit a band gap of ca. 2.7 eV and corresponding activity at visible wavelengths. The decrease in band gap compared to the starting materials is attributed to larger valance band dispersion resulting from the energy difference between O2p and N2p orbitals and from the p-d repulsion between Zn3d and N2p+O2p electrons in the upper valance band, which raises the top of the valance band. (Zn(1.44)Ge)(N(2.08)O(0.38)) powder modified by surface loading with RuO(2) nanoparticles at 5 wt % achieves overall water splitting under both ultraviolet and visible irradiation.
引用
收藏
页码:1042 / 1048
页数:7
相关论文
共 34 条
[1]   HETEROGENEOUS PHOTOCATALYTIC OXIDATION OF CYANIDE AND SULFITE IN AQUEOUS-SOLUTIONS AT SEMICONDUCTOR POWDERS [J].
FRANK, SN ;
BARD, AJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1977, 81 (15) :1484-1488
[2]   Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering [J].
Futsuhara, M ;
Yoshioka, K ;
Takai, O .
THIN SOLID FILMS, 1998, 322 (1-2) :274-281
[3]   Ta3N5 as a novel visible light-driven photocatalyst (λ<600 nm) [J].
Hitoki, G ;
Ishikawa, A ;
Takata, T ;
Kondo, JN ;
Hara, M ;
Domen, K .
CHEMISTRY LETTERS, 2002, (07) :736-737
[4]   An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤ 500 nm) [J].
Hitoki, G ;
Takata, T ;
Kondo, JN ;
Hara, M ;
Kobayashi, H ;
Domen, K .
CHEMICAL COMMUNICATIONS, 2002, (16) :1698-1699
[5]   ESCA STUDY OF MOLECULAR GES3-XTEXAS2 GLASSES [J].
HOLLINGER, G ;
KUMURDJIAN, P ;
MACKOWSKI, JM ;
PERTOSA, P ;
PORTE, L ;
DUC, TM .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 1974, 5 (NOV-D) :237-245
[6]   A Rietveld-analysis program RIETAN-98 and its applications to zeolites [J].
Izumi, F ;
Ikeda, T .
EUROPEAN POWDER DIFFRACTION, PTS 1 AND 2, 2000, 321-3 :198-203
[7]  
Izumi F., 2002, Transw. Res. Netw, V3, P699
[8]   LaTiO2N as a visible-light (≤600 nm)-driven photocatalyst (2) [J].
Kasahara, A ;
Nukumizu, K ;
Takata, T ;
Kondo, JN ;
Hara, M ;
Kobayashi, H ;
Domen, K .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (03) :791-797
[9]   Photoreactions on LaTiO2N under visible light irradiation [J].
Kasahara, A ;
Nukumizu, K ;
Hitoki, G ;
Takata, T ;
Kondo, JN ;
Hara, M ;
Kobayashi, H ;
Domen, K .
JOURNAL OF PHYSICAL CHEMISTRY A, 2002, 106 (29) :6750-6753
[10]   Electrochemical investigation of the gallium nitride-aqueous electrolyte interface [J].
Kocha, SS ;
Peterson, MW ;
Arent, DJ ;
Redwing, JM ;
Tischler, MA ;
Turner, JA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (12) :L238-L240