A logarithmic Sobolev inequality on the real line

被引:7
作者
Pearson, JM [1 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
关键词
D O I
10.1090/S0002-9939-97-03979-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new logarithmic Sobolev inequality for the real line is obtained. The inequality is obtained by applying a differentiation argument to a sharp Sobolev inequality due to Nagy, and is L-p rather that L-2 in structure.
引用
收藏
页码:3339 / 3345
页数:7
相关论文
共 13 条
[1]  
BAKRY D, 1984, CR ACAD SCI I-MATH, V299, P775
[2]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[3]   PITTS INEQUALITY AND THE UNCERTAINTY PRINCIPLE [J].
BECKNER, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (06) :1897-1905
[4]   SOBOLEV INEQUALITIES, THE POISSON SEMIGROUP, AND ANALYSIS ON THE SPHERE SN [J].
BECKNER, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (11) :4816-4819
[5]  
Erdelyi A, 1953, HIGHER TRANSCENDENTA
[6]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083
[7]   ON HYPERCONTRACTIVITY FOR MULTIPLIERS ON ORTHOGONAL POLYNOMIALS [J].
JANSON, S .
ARKIV FOR MATEMATIK, 1983, 21 (01) :97-110
[8]   HYPERCONTRACTIVITY FOR THE HEAT SEMIGROUP FOR ULTRASPHERICAL POLYNOMIALS AND ON THE N-SPHERE [J].
MUELLER, CE ;
WEISSLER, FB .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 48 (02) :252-283
[9]  
Nagy B. V. Sz., 1941, ACTA SCI MATH SZEGED, V10, P64
[10]  
Nelson E., 1973, J FUNCT ANAL, V12, P211, DOI 10.1016/0022-1236(73)90025-6