Bayesian reconstruction of chaotic dynamical systems

被引:59
作者
Meyer, R [1 ]
Christensen, N
机构
[1] Univ Auckland, Dept Stat, Auckland 1, New Zealand
[2] Carleton Coll, Northfield, MN 55057 USA
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 03期
关键词
D O I
10.1103/PhysRevE.62.3535
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a Bayesian approach to the problem of determining parameters of nonlinear models from time series of noisy data. Recent approaches to this problem have been statistically flawed. By applying a Markov chain Monte Carlo algorithm, specifically the Gibbs sampler, we estimate the parameters of chaotic maps. A complete statistical analysis is presented, the Gibbs sampler method is described in detail, and example applications are presented.
引用
收藏
页码:3535 / 3542
页数:8
相关论文
共 38 条
[1]   THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS [J].
ABARBANEL, HDI ;
BROWN, R ;
SIDOROWICH, JJ ;
TSIMRING, LS .
REVIEWS OF MODERN PHYSICS, 1993, 65 (04) :1331-1392
[2]   LIGO - THE LASER-INTERFEROMETER-GRAVITATIONAL-WAVE-OBSERVATORY [J].
ABRAMOVICI, A ;
ALTHOUSE, WE ;
DREVER, RWP ;
GURSEL, Y ;
KAWAMURA, S ;
RAAB, FJ ;
SHOEMAKER, D ;
SIEVERS, L ;
SPERO, RE ;
THORNE, KS ;
VOGT, RE ;
WEISS, R ;
WHITCOMB, SE ;
ZUCKER, ME .
SCIENCE, 1992, 256 (5055) :325-333
[3]  
[Anonymous], 1996, BAYES EMPERICAL BAYE
[4]   LIKELIHOOD AND BAYESIAN PREDICTION OF CHAOTIC SYSTEMS [J].
BERLINER, LM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (416) :938-952
[5]  
Best N., 1995, CODA MANUAL VERSION
[6]   A MONTE-CARLO APPROACH TO NONNORMAL AND NONLINEAR STATE-SPACE MODELING [J].
CARLIN, BP ;
POLSON, NG ;
STOFFER, DS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (418) :493-500
[7]   Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis [J].
Christensen, N ;
Meyer, R .
PHYSICAL REVIEW D, 1998, 58 (08)
[8]  
COLLET P, 1980, INTERATED MAPS INTER
[9]   Nonlinear noise reduction through Monte Carlo sampling [J].
Davies, ME .
CHAOS, 1998, 8 (04) :775-781
[10]  
Devaney R, 1987, An introduction to chaotic dynamical systems, DOI 10.2307/3619398