Conformational sampling of bioactive molecules: A comparative study

被引:73
作者
Agrafiotis, Dimitris K.
Gibbs, Alan C.
Zhu, Fangqiang
Izrailev, Sergei
Martin, Eric
机构
[1] Johnson & Johnson Pharmaceut Res & Dev LLC, Exton, PA 19341 USA
[2] Novartis, Emeryville, CA 94608 USA
关键词
D O I
10.1021/ci6005454
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The necessity to generate conformations that sample the entire conformational space accessible to a given molecule is ubiquitous in the field of computer-aided drug design. Protein-ligand docking, 3D database searching, and 3D QSAR are three commonly used techniques that depend critically upon the quality and diversity of the generated conformers. Although there are a wide range of conformational search algorithms available, the extent to which they sample conformational space is often unclear. To address this question, we conducted a robust comparison of the search algorithms implemented in several widely used molecular modeling packages, including Catalyst, Macromodel, Omega, MOE, and Rubicon as well as our own method, stochastic proximity embedding ( SPE). We found that SPE used in conjunction with conformational boosting, a heuristic for biasing conformational search toward more extended or compact geometries, along with Catalyst, are significantly more effective in sampling the full range of conformational space compared to the other methods, which show distinct preferences for either more extended or more compact geometries.
引用
收藏
页码:1067 / 1086
页数:20
相关论文
共 36 条
[1]   A self-organizing principle for learning nonlinear manifolds [J].
Agrafiotis, DK ;
Xu, HF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (25) :15869-15872
[2]   Stochastic proximity embedding [J].
Agrafiotis, DK .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (10) :1215-1221
[3]   The Protein Data Bank and the challenge of structural genomics [J].
Berman, HM ;
Bhat, TN ;
Bourne, PE ;
Feng, ZK ;
Gilliland, G ;
Weissig, H ;
Westbrook, J .
NATURE STRUCTURAL BIOLOGY, 2000, 7 (Suppl 11) :957-959
[4]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[5]   Reproducing the conformations of protein-bound ligands:: A critical evaluation of several popular conformational searching tools [J].
Boström, J .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2001, 15 (12) :1137-1152
[6]   Assessing the performance of OMEGA with respect to retrieving bioactive conformations [J].
Boström, J ;
Greenwood, JR ;
Gottfries, J .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2003, 21 (05) :449-462
[7]   PREDICTION OF THE FOLDING OF SHORT POLYPEPTIDE SEGMENTS BY UNIFORM CONFORMATIONAL SAMPLING [J].
BRUCCOLERI, RE ;
KARPLUS, M .
BIOPOLYMERS, 1987, 26 (01) :137-168
[8]   CHAIN CLOSURE WITH BOND ANGLE VARIATIONS [J].
BRUCCOLERI, RE ;
KARPLUS, M .
MACROMOLECULES, 1985, 18 (12) :2767-2773
[9]   AN INTERNAL COORDINATE MONTE-CARLO METHOD FOR SEARCHING CONFORMATIONAL SPACE [J].
CHANG, G ;
GUIDA, WC ;
STILL, WC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (12) :4379-4386
[10]   RAPID CALCULATION OF COORDINATES FROM DISTANCE MATRICES [J].
CRIPPEN, GM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1978, 26 (03) :449-452